
  

AFRL-IF-RS-TR-2003-198 
Final Technical Report 
August 2003 
 
 
 
 
 
 
DATA INTENSIVE SYSTEMS (DIS) BENCHMARK 
PERFORMANCE SUMMARY 
  
Titan Corporation 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. J201 
  
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, includ-
ing foreign nations. 
 
 
 AFRL-IF-RS-TR-2003-198 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 

APPROVED:                 /s/ 
CHRISTOPHER J. FLYNN 
Project Engineer 

 
 
 
 
 
 

 FOR THE DIRECTOR:                /s/ 
JAMES A. COLLINS, Acting Chief 
Information Technology Division 
Information Directorate 
 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
AUGUST 2003

3. REPORT TYPE AND DATES COVERED 
Final  Jun 99 – Dec 02 

4. TITLE AND SUBTITLE 
DATA INTENSIVE SYSTEMS (DIS) BENCHMARK PERFORMANCE 
SUMMARY 
 

6. AUTHOR(S) 
Joseph Musmanno 
 
  

5.  FUNDING NUMBERS 
C     - F30602-99-C-0153 
PE   - 62301E 
PR   - H307 
TA   -  DI 
WU  -  SB 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Titan Corporation 
Aerospace Electronics Division 
470 Totten Pond Road 
Waltham Massachusetts 02451 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency    AFRL/IFTC 
3701 North Fairfax Drive                                      26 Electronics Parkway 
Arlington Virginia 22203-1714                              Rome New York 13441-4514 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2003-198 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Christopher J. Flynn/IFTC/(315) 330-3249/ Christopher.Flynn@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
Peak processor performance increases at a rate of 60% per year, but memory access speeds increase at a rate of only 
7% per year. Computing-system designers compensate for the resulting divergence by incorporating caches or latency-
hiding measures into their designs. However, elements such as larger caches, prefetching, and multithreading do not 
address the needs of data-intensive DoD applications, which consequently operate at rates far below the peak proces-
sor capacity. As the mismatch between processor and memory grows the number of applications unable to operate at 
peak rates increases. The DARPA Data Intensive Systems Program was created to address this problem. A variety of 
novel architectures or enhancements were developed under this program to increase the effective performance-as op-
posed to the rated peak performance of systems running data-starved applications. Under this project, a DIS Bench-
mark Suite was developed to measure the performance of the prototypical systems. Additionally, the DIS Stressmark 
Suite was developed to assist performance measurement during the development process. Participating teams were 
expected to utilize these tools and supply their measurements. In this report the benchmarking tools are introduced, the 
reported results are summarized, and an objective analyses of the results is provided. 
 

15. NUMBER OF PAGES
144

14. SUBJECT TERMS  
Data Intensive Systems, Computer Benchmarks, Processor in Memory, Adaptive Cache 
Management, Memory Wall 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 

  

i

 

Table of Contents 

Abstract 1 

1 Introduction 2 
1.1 DIS Program Summary 4 
1.2 Benchmarking Project Summary 6 

2 Methods 11 
2.1 Specified Procedures 11 
2.2 Sources 14 
2.3 Selected Metrics 14 
2.4 Other Assumptions 15 
2.5 Benchmark Suite 15 
2.6 Method of Moments 17 
2.7 Simulated SAR Ray Tracing 19 
2.8 Image Understanding 22 
2.9 Multidimensional Fourier Transform 25 
2.10 Data Management 27 
2.11 Stressmarks 34 
2.12 Pointer Stressmark 37 
2.13 Update Stressmark 40 
2.14 Matrix Stressmark 43 
2.15 Neighborhood Stressmark 45 
2.16 Field Stressmark 48 
2.17 Corner-Turn Stressmark 51 
2.18 Transitive Closure Stressmark 52 
2.19 GUPS 54 

3 DIVA 55 
3.1 Description 55 
3.2 Measurements 56 
3.3 Pointer 57 
3.4 Update 58 
3.5 Corner-Turn 58 
3.6 Transitive Closure 60 
3.7 Neighborhood 63 
3.8 Hardware Experiment 64 
3.9 Programming 66 
3.10 Remarks 66 

4 IRAM 67 
4.1 Description 67 
4.2 Measurements 67 
4.3 Benchmarking Environment 68 
4.4 Matrix Stressmark 68 
4.5 Neighborhood Stressmark 69 
4.6 Transitive Closure Stressmark 70 
4.7 Corner-Turn Stressmark 72 
4.8 FFT Benchmark 72 
4.9 GUPS 73 
4.10 Power Consumption 73 

4.11 Programming 74 
4.12 Remarks 74 

5 Smart Memories 75 
5.1 Description 75 
5.2 Measurements 75 
5.3 Programming 76 
5.4 Remarks 76 

6 Imagine 77 
6.1 Description 77 
6.2 Measurements 78 
6.3 Programming 80 
6.4 Remarks 80 

7 Scalable Graphics Systems 82 
7.1 Description 82 
7.2 Measurements 82 
7.3 Programming 83 
7.4 Remarks 83 

8 HiDisc 84 
8.1 Description 84 
8.2 Measurements 85 
8.3 Programming 86 
8.4 Remarks 87 

9 Aries 88 
9.1 Measurements 88 
9.2 Programming 88 
9.3 Remarks 88 

10 Impulse 89 
10.1 Description 89 
10.2 Measurements 89 
10.3 Pointer 91 
10.4 Matrix 94 
10.5 Transitive Closure 98 
10.6 Corner-Turn 99 
10.7 Programming 99 
10.8 Remarks 100 

11 Malleable Caches 101 
11.1 Description 101 
11.2 Measurements 101 
11.3 Programming 104 
11.4 Remarks 104 

12 AMRM 105 
12.1 Description 105 
12.2 Measurements 106 



 

 

  

ii

12.3 Efficiency 108 
12.4 Matrix 109 
12.5 Transitive Closure 110 
12.6 Neighborhood 111 
12.7 Programming 111 
12.8 Remarks 111 

13 Advisor 113 
13.1 Description 113 
13.2 Measurements 114 
13.3 Transitive Closure 116 
13.4 Programming 120 
13.5 Remarks 121 

14 Algorithmic Strategies for 
Compiler-Controlled Caches 123 

14.1 Description 123 
14.2 Programming 128 
14.3 Remarks 129 

15 Program Analysis 130 
15.1 Demonstrated Stressmark Gains 130 
15.2 SLIIC Measurements 135 
15.3 Projections 136 

16 ACRONYMNS 137 



 

 1

                                                                                                    Abstract 
Peak processor performance increases at a rate of 60% per year, but memory access speeds increase at a rate of only 
7% per year.  Computing-system designers compensate for the resulting divergence by incorporating caches or la-
tency-hiding measures into their designs.  However, elements such as larger caches, prefetching, and multithreading 
do not address the needs of data-intensive DoD applications, which consequently operate at rates far below the peak 
processor capacity.  As the mismatch between processor and memory grows, the number of applications unable to 
operate at peak rates increases. 

The DARPA Data Intensive Systems Program was created to address this problem.  A variety of novel architectures 
or enhancements were developed under this program to increase the effective performance—as opposed to the rated 
peak performance—of systems running data-starved applications.  Under this program, we developed the DIS 
Benchmark Suite to measure the performance of the prototypical systems.  Additionally, the DIS Stressmark Suite 
was developed to assist performance measurement during the development process.  Participating teams were ex-
pected to utilize these tools and supply their measurements. 

In this report, we introduce the benchmarking tools, summarize the reported results, and perform objective analyses 
of the results.  We also compile normalized data to support basic comparisons of the approaches. 
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1 Introduction 
The speed of modern processors is growing at approximately 60% per year, while the speed of memory increases 
only about 7% per year.  The resultant growing mismatch is making it increasingly difficult to fully exploit the 
power of new processors.  Architectural mechanisms, such as out-of-order instruction execution and non-blocking 
caches, can hide the memory latency of programs that have high degrees of spatial and temporal locality.  However, 
many important defense applications employ large data sets accessed non-contiguously.  These applications cannot 
take full advantage of typical memory-access optimizations, and consequently perform at substantially below peak 
rates due to data starvation. 

The DARPA Information Processing Technology Office (IPTO)1 created the Data-Intensive Systems (DIS) research 
program2 to develop new data-access architectures in a direct response to data-starved Defense applications.  These 
architectures would benefit any application required to access or manipulate data in any manner not consistent with 
regular, ordered data access patterns and local working set models assumed by today’s conventional architectures.  
Such applications include model-based Automatic Target Recognition (ATR), synthetic aperture radar (SAR) codes, 
large scale dynamic databases/battlefield integration, dynamic sensor-based processing, high-speed cryptanalysis, 
high speed distributed interactive and data intensive simulations, data-oriented problems characterized by pointer-
based and other highly irregular data structures, security-sensitive applications (where protection and validation 
strategies are central), and real-time visualization. 

The DIS mission was to explore new memory architectures concepts, techniques, and implementations that reduce 
data bandwidth and data access latency limitations for defense applications.  The program attempted to reduce data 
access limitations by pursuing novel approaches in two categories: 

1) processing of data in situ, including Processor-in-Memory (PIM) nodes and computational streaming; and 

2) adaptive cache management. 

                                                           
1 http://www.darpa.mil/ipto 
2 http://www.darpa.mil/ipto/research/dis 
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In-situ processing:  place logic within memory/data 
stream to maximize effective memory bandwidth. 

Adaptive cache management:  develop mechanisms that 
empower applications to directly manage the flow and 
placement of data throughout the memory hierarchy. 

 

As part of the DIS effort, the Aerospace Electronics Division3 of Titan Corporation4 was charged with benchmark-
ing and evaluating the DIS technology.  A suite of benchmarks and stressmarks were created, along with appropriate 
test data and metrics.  DIS participants were requested to utilize this suite, and report results.  This document is the 
summary and analysis of those results. 

                                                           
3 Formerly Atlantic Aerospace Electronics Corporation.  http://www.aaec.com 
4 http://www.titan.com 
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1.1 DIS Program Summary 
In this section, the DIS program is summarized briefly, to set the background and scope of this report.  The text of 
the following three subsections is quoted directly from the program web pages,5 where the reader is referred for de-
tail on individual projects. 

1.1.1 Background 

“Peak processor performance increases are at a rate of 60% per year. This is a necessary trend that enables high 
throughput Defense applications to be hosted in compact, COTS-based architectures. Unfortunately, the access la-
tency of the memory chips and the memory bandwidth of the processors they feed are not keeping pace. Memory 
access latency is improving at only 7% per year, resulting in data-starved processing and an inability to utilize proc-
essor advances or reach peak system processing performance. High bandwidth and dynamically accessed data base 

systems have reached a “memory wall” in 
conventional architectures that result in a 
memory/CPU ‘impedance mismatch’—the 
rate that data can be supplied to a ‘processor’ 
does not match the rate at which the ‘proces-
sor’ can perform useful work on that data. 
Thus, the performance of many Defense ap-
plications will be constrained not by the proc-
essing speed or memory size of their 
computers, but rather by the ability of their 
memory systems to deliver the data. 

“Consider Object-Level Change Detection 
(OLCD), which contains a COTS Object-
Oriented Database (OODB) of 2 Gbytes. To 
meet its performance goals, the OODB is 

distributed over four processors. These processors are idle 98% of the time while their memories struggle to keep up 
with patterns of data access for which they were not designed. To overcome this problem, Defense users of object-
oriented databases and other data-intensive applications can build special purpose devices (SPDs) designed to opti-
mally serve their specific task. However, such systems are expensive to design and build, they are even more expen-
sive to program (as there is no COTS software), and they present a long-term maintenance burden. These solutions 
very rapidly fall behind their commercial counterparts. 

“In addition, the continued scaling of VLSI technology is forcing a dramatic change in the nature of electronic com-
puting. There are three aspects of scaling that are driving this change. First, the decreasing cost of computation is 
pushing it into many new applications, ones that are off the desktop and in embedded systems dealing with real-time 
data. Second, the cost of on-chip wires is growing in significance, making today's architectures that use a global 
resource model harder and harder to build. Third, as chip complexity grows, building custom silicon solutions for 
each application space will become less and less cost effective since the NRE costs of the design will continue to 
grow. Cost effective chips will have to be sold in large volumes.  

“The above issues are motivating the development of new data-access architectures […]” 

                                                           
5 http://www.darpa.mil/ipto/research/dis 
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1.1.2 Application Scope 

Data-Intensive Applications Are Data-Intensive Applications Are NOT 

Large high-rate data streams (data-rate limited) 

Distributed data access (non-contiguous data) 

Dynamic data accesses (lack of predictability) 

Applications with small working sets of contiguous 
data 

1.1.3 Goals 

The goal and derived objectives of the DIS program were given as follows. 

Goal 

Demonstrate data placement, advanced data caching, and memory/data architecture concepts with 
the potential to realize greater than one-order of magnitude (10X) improvement in run-time per-
formance for data-starved applications. 

Objectives 
• Develop new data-access architectures, data flow and placement concepts, and the associated chip-level 

technologies necessary to respond to data-starved defense applications. 
• Enable the full use of increasing processing element capabilities and reduce the under-utilization of system 

resources due to restricted data flow and high latency that many data rich applications encounter with cur-
rent memory implementations. 

Memory Architecture Challenges 
• Maximize effective memory bandwidth 
• Design, develop, fabricate prototype Processor in Memory (PIM) devices to optimize memory bandwidth 
• Design, develop, fabricate prototype streaming data processing devices to optimize processing of high rate, 

stream data applications 
• Demonstrate potential technologies for selected data-intensive applications 

Data Placement/Movement Challenges 
• Develop data placement techniques that significantly improve data availability 
• Develop augmented and adaptive cache techniques and implementations that optimize data movement and 

effective utilization 
• Develop algorithmic approaches to utilize architectures and techniques being developed 
• Supporting infrastructures: 
• Develop evaluating/validating benchmarks and stressmarks 
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1.1.4 Program Timeline 

When created, the program included two major milestones, situated at the ends of two phases of investigation.  The 
milestones involved required demonstrations of performance, and came to be known as the mid-term, and final ex-
aminations.  They had the following minima defined for success: 
Mid-term 

• In Situ Processing:  Working memory chips capable of 1M ray-patch intersection compu-
tations per second each, along with simulation results justifying the anticipation of system 
capacity to meet the final goals. 

• Cache Management:  20x performance improvement in data-starved applications perform-
ance. 

Final • X-Patch challenge:  64 looks at a T-72 in under one minute (~100M ray-patch intersection 
calculations per second. 

• 20x performance improvement in Method-of-Moments Finite Multipole Method. 

• 100x performance improvement in other data-starved defense applications. 

 

The DIS Benchmark Suite was developed in support of these goals. 

During the initial phase, it became clear that the mid-term goal of working chips was overly ambitious; many teams 
cited difficulty with fabrication.  Additionally, program needs changed.  Consequently, program goals were modi-
fied.  The first phase was extended, and the second phase was cancelled. 

Some participants also needed smaller, simpler benchmark algorithms for use during testing and development.  The 
DIS Stressmark Suite was created to support this need.  It was not intended as a replacement of the Benchmark 
Suite. 

1.2 Benchmarking Project Summary 
As part of the DIS program, we created a suite of tools for evaluating the performance of new data-intensive sys-
tems.  This section introduces the goals and scope of the benchmarking effort.  Sections 2.5 and 2.6 give more in-
formation about the benchmark suite. 

1.2.1 Goals 

The primary goal of this effort was the development of a benchmark suite that can be used to quantify the perform-
ance gains likely to be achieved for defense computer programs when implemented using approaches and architec-
tures developed under the DIS program. 

Any benchmark specification dealing with early research into new systems must remain architecture-neutral.  In 
support of this goal, the benchmark specifications were essentially only the mathematical description of problems’ 
solutions.  Of course, due to years of development in the context of Von Neumann computer architectures, many 
known optimizations were utilized, and an attempt was made to provide or reference these, so that participants 
charged with implementing the benchmarks would not be faced with having to independently rediscover the optimi-
zations. 

Benchmarks that focus on the measurement of relative performance frequently involve implementation only of spe-
cific, isolated functions, resulting in accurate measurement of peak performance.  This level of performance is rarely 
realizable in general application, so benchmarks that include the processes of data movement and preparation were 
desirable for a more generalized measurement of real performance.  Considering the variety of architectures under 
scrutiny in the DIS program, it would have been dangerous to presume that these “overhead” functions diminish in 
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proportional resource consumption as data sets grow larger.  Therefore, avoidance of isolated tasks as benchmarks 
was a goal of this program; rather, performance related to the interactions between program components was to be 
included in the measurements. 

Weems, et al,6 while reviewing lessons from prior benchmark efforts, pointed out:   

“Having a known, correct solution for a benchmark is essential, since it is difficult to compare the 
performance of architectures that produce different results.  For example, suppose architecture A 
performs a task in half the time of B, but A uses integer arithmetic while B uses floating-point, 
and they obtain different results.  Is A really twice as powerful as B?” 

Therefore, a complete solution with test data sets was considered one of the essential components of the distribution 
of the benchmark specification. 

Although there are sometimes competing ideas about how to best solve a particular problem, the goal of a bench-
mark is not specifically to solve a problem, but rather to test the performance of different machines doing compara-
ble work.  Since DIS architectures were likely to vary greatly, significant latitude was allowed in the implementation 
of a solution to benchmark problems.  However, participants were cautioned to remain cognizant of the fact that 
ultimately, the measurements taken must be meaningful in the context of defense problems, and specifically in the 
context of relative gain.  So, it was not a goal of the benchmark effort to develop the best solutions for the most dif-
ficult problems; rather, it was a goal to employ pertinent solutions to problems expected to benefit from DIS re-
search, and allow enough flexibility to maximize individual performance, yet remain consistent and comparable. 

While benchmarks that are too simplistic do not offer valuable results, those that are too complex are never imple-
mented, at least in a meaningful way.  Resources are limited, so ease of implementation is a factor of consideration.  
It was a goal of this program to develop benchmark programs that required relatively little source code during im-
plementation, yet still offer meaningful results. 

Often, developed high-performance systems remain under-utilized due to the esoteric or difficult nature of their pro-
gramming.  Therefore, an important goal of the effort was to evaluate the labor costs associated with use of candi-
date architectures.  The ability to handle existing, ‘legacy code’ was an important consideration, as is the labor cost 
to exploit the powerful features of these systems. 

A program will generally execute faster when its required data set is small enough to fit in main memory, as op-
posed to when paging or swapping is required.  Likewise, when the data set is small enough to fit in cached mem-
ory, it will generally execute faster still.  Balancing the competing factors of speed, size, and cost is a major 
engineering decision, and quantifying the effects of that decision was a goal of this effort. 

Finally, in support of the primary goal of being able to quantify performance gains, it was a goal of this effort to 
remain open to any additional information participants wish to supply that will assist reviewers in making an accu-
rate determination.  Minimum participation requirements were specified, but additional results and analyses were 
solicited. 

One of the greatest challenges, of course, was coming up with benchmarks open to algorithmic modification, so that 
one can take advantage of the architecture’s novelty, but sufficiently rigid that the results support useful comparison. 

1.2.2 Benchmark Suite  

Given the motivation and goals outlined above, the first phase began with determination of the content of the 
benchmark suite.  Understanding the desire to retain an application-oriented focus, algorithms were selected, pre-
sented to participants, refined based on participant feedback, and developed.  The final suite contained five algo-
rithms from three classes found to provide a representative scope of achievable performance improvement for 
problems of interest to key DARPA programs. 

                                                           
6 Weems, Riseman, and Hanson, The DARPA Image Understanding Benchmark for Parallel Computers, Journal of 
Parallel and Distributed Computing, 11, 24 January 1991. 
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Application Domain Benchmark 

Synthetic Aperture Radar Ray Tracing7 Model-Based Image Generation – This class in-
cludes generation of synthetic signatures and scenes 
for targets and terrain based on complex models of 
objects and sophisticated camera models for various 
sensor types.  Applications include target recogni-
tion, real-time scene simulation for visualization or 
training, and model-driven change detection. 

Method of Moments, Finite Multipole Method8 

Image Understanding Target Detection – This class includes spatial- and 
frequency-domain target detection in scenes col-
lected from a wide range of sensor types.  Applica-
tions include automated exploitation and cueing 
systems. 

Multidimensional Fourier Transform 

Database Management – This class includes algo-
rithms for index maintenance, storage management, 
and content-based query processing.  Applications 
include sensor data archive management and geo-
graphic information systems such as the Dynamic 
Database for Battlefield Situation Awareness. 

Data Management 

1.2.3 Benchmark Suite Lessons 

The DIS Benchmark Suite was created to facilitate the demonstration of comprehensive goals.  However, those 
goals were frequently dependent on chip fabrication cycles.  Since the second phase of the program was curtailed, 
the benchmarks were not fully implemented. 

• The application-oriented focus of the Benchmarks was appropriate for implementation after chip development 
as intended, but participants desired simpler code fragments for use during the early stages of architecture de-
velopment. 

• Mechanically, the I/O required by the benchmarks was cumbersome.  It would certainly be a challenge to mimic 
a data-intensive application that did not require a lot of I/O.  After all, reuse of smaller quantities of data would 
obviate the primary need for new architectures. 

• The benchmarks were dependent upon the availability of high-level OS features.  This was a justifiable depend-
ence given the program goals, but high-level OS implementations were not available under the curtailed sched-
ule. 

• Finally, many of the important metrics (e.g., power, labor) depended upon subjective collection.  Ultimately, 
very few of the teams were able to supply useful information in these areas. 

1.2.4 Benchmark Miss Ratios 

The AMRM team9 reported that the DIS Benchmark Suite exhibited low cache-miss ratios.  Upon investigation, 
several problems were found with that finding: 

                                                           
7 Benchmark developed by ERIM, International. 
8 Benchmark developed by the Boeing Corporation. 
9 See Section 12. 
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• The team only looked at average miss-ratios.  However, cache misses come in waves, and a period of many 
misses cannot be compensated by a miss-free period.  Considering the scale of the benchmark applications, the 
miss-ratios reported are actually quite high. 

• Due in part to the above, average miss-ratio is not a good metric.  In its report,10 the AMRM team stated, “[We] 
show that memory adaptations may be effective in a short period of time, but the performance is not detectable 
globally.  […] we show that, in general, miss rate is not an effective metric.” 

• In its tests, the team only measured first n steps, where n was on the order of millions.  For these benchmarks, 
that number of cycles would generally not even represent the entire initialization phase.  In other words, the 
heart of the benchmark was not examined.  In later measurements, the team found higher miss-rates when look-
ing at later portions of the execution sequence. 

1.2.5 Stressmark Suite 

In contrast to the benchmarks, the stressmarks are largely synthetic problems, created expressly for the purpose of 
exhibiting certain memory access behaviors.  The realism of these is necessarily limited, but taken together they can 
be used to demonstrate mitigation of specific data-intensive problem areas.  Where the benchmarks are focused code 
retaining the context of the enveloping application, the stressmarks are a suite of specific procedures that illustrate 
DIS attributes, intended to be taken collectively. 

The suite includes seven kernels, each composed of just tens of lines of code.  The data to be manipulated within the 
algorithms is all generated randomly, which additionally limits the realism of the benchmark.  The suite is shown in 
the following table. 

Stressmark Characteristic 

Pointer Irregular access to sparse data; pointer-chasing. 

Update Like Pointer, but requiring memory writes. 

Neighborhood Mixed use:  dense 2-D FIR kernel, with histogram. 

Matrix Sparse Matrix-Vector Multiply. 

Field Dense, regular access; infrequent writes. 

Transitive Closure Dense, regular access; read-modify-write. 

Corner-Turn Unit- and non-unit-stride access. 

The stressmarks are described further in sections 4.11 through 4.18. 

                                                           
10 Haitao Du, et al, A Quantitative Evaluation of Adaptive Memory Hierarchy, UC Irvine Technical Report ICS-TR-
01-41, August, 2002. 
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1.2.6 Stressmark Suite Lessons 

While the Stressmark Suite met its goals, the course of the program illustrated the following lessons: 

• The Corner-Turn and Matrix stressmarks measure the time required to complete a fixed number of iterations.  A 
more convenient specification would have been to count the iterations completed in a fixed time period. 

• Although allowed and recommended, some teams did not generate the (large) initial data outside of their simu-
lations.  Consequently, some of the simulations took a very long time to run.  The Matrix stressmark, especially, 
executed in a small fraction of the time needed to generate the input data. 

• When stressmarks are to be utilized in simulations, brief execution is valuable.  For DIS, some teams did not 
execute entire stressmarks, choosing instead to abort operation after some number of steps, or one major itera-
tion.  

• The AMRM team reported that the stressmarks have no conflict misses—only compulsory and capacity.  This is 
a side-effect of the need for extremely simple kernels requiring practically no input or output.  The benchmarks 
are more realistic in their data usage. 

• Though the stressmarks should be valuable for experimentation, the program’s emphasis on the stressmarks is 
neither intentional nor desirable. 

• Teams were inconsistent in their use of the stressmarks, and of the reporting of results.  A great deal of effort 
was required to compile results for even cursory comparisons.  It is very difficult to strike a balance between 
implementation flexibility and minimization of reporting variability.  Future benchmark developers should con-
sider bifurcating their suite to address these opposing goals. 
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2 Methods 
The DIS benchmarking effort faced major challenges.  Consider: 

• How does one measure the memory system performance without incidentally measuring the processor?  Items 
such as clock rates and instruction sets bear dramatic effects on the function of the memory system. 

• How does one normalize for radically differing architectural approaches?  Note that when the effort began, 
suggested approaches covered a spectrum from simple software modifications all the way to multidimensional 
MIMD array processors with no global addressing. 

• How does one continually ensure DoD relevance when projects retain contrary commercial goals? 

In this section, we describe the tools used in our attempt to meet those challenges.  The general procedures, bench-
marks, stressmarks, and data are summarized.  For details about these, the reader is referred to DIS Benchmark Suite 
Analysis and  Specifications11 and DIS Stressmark Suite12.  Efficiency is also discussed in the context of derived 
measurements. 

2.1 Specified Procedures 
In addition to selecting the benchmark algorithms, certain procedures were developed to assist with the analysis of 
results submitted by participating teams.  These generally applied to both benchmarks and stressmarks, and are in-
troduced in this subsection for the purpose of illustrating the fact that benchmarking is a process, rather than simply 
the utilization of standard blocks of code. 

2.1.1 Benchmark Procedures 

A detailed description of the procedures to be used for benchmarking was given with the specifications.  Some high-
lights are noted here. 

• Participants were allowed to modify the supplied source code to their pleasure.  Modified code was required to 
be supplied with results, so that competing teams could benefit from algorithmic insights.  This requirement was 
expected to reduce the effects of any given team’s access to domain expertise. 

• Participants were additionally required to measure performance the benchmarks using ‘un-optimized’ code.  
That is, the baseline code provided for each benchmark was to be compiled without any modification, and run 
‘as-is’ to establish performance of the architecture utilizing only automatic optimizations.  In addition, partici-
pants are encouraged to modify or replace this baseline source code and run the tests again, establishing per-
formance after manual optimizations. 

• A detailed set of guidelines regarding the information needed to ensure adequate interpretation of the results 
was given. 

                                                           
11 http://www.aaec.com/projectweb/dis/DIS_Benchmarks_V1.pdf 
12 http://www.aaec.com/projectweb/dis/DIS_Stressmarks_V1_0.pdf 
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• It was noted that the energy spent by implementers laboring in the development of each benchmark implemen-
tation is of special interest.  Since it was understood to be difficult to measure accurately, participants were 
asked to candidly report on this subject.  A summary of the required skills, labor expended, and problems en-
countered during the process was identified as necessary to establish the utility of a given design. 

• In several cases, common algorithms used in the solution of the selected problems were optimized for use with 
traditional systems.  For example, certain steps in the Method of Moments algorithm are only present to take 
advantage of unit-stride memory accesses.  While these steps were not strictly part of the solution algorithm, it 
would be onerous to require participants to independently rediscover them.  In some cases, it would require im-
plementers to become experts in the application field.  So, the algorithmic descriptions are intended to cover the 
mathematics of the solutions only.  Known optimizations were additionally provided for informational pur-
poses, but implementation of these was not required. 

• Pseudo-code provided in the algorithmic specifications was intended to provide guidance and clarification of 
algorithms only; it was not intended to represent optimal–or efficient–implementations of problem solutions.  
Similarly, pseudo-code was not intended to represent ‘known optimizations’ as described above, except when 
specifically identified as such. 

• Participants were expected to use all the supplied data sets.  These were provided in a range of sizes, so as to 
test fixed-system scaling effects resulting from limited-resource optimizations.  If particular data sets were un-
usable for some reason (e.g., the dataset requires more memory than that which is available), the reason was to 
have been reported. 

• There was not to be any recompilation or manipulation of the software or hardware between runs producing 
final measurements.  Recall that quantifying the effects of system design decisions is one of the goals of this ef-
fort.  Therefore, the environment must be consistent throughout the tests to ensure validity of measurements 
relative to one another. 

• Common data types were specified for use while benchmarking.  These were generally based upon IEEE-
accepted standards. 

• Baseline source code and data sets were provided with each benchmark.  Baseline source code was not provided 
for stressmarks, though many teams used the example code from the specifications as a baseline. 

2.1.2 Benchmark Measurement Procedures 

The following guidance was given to teams for measurement of performance of a benchmark implementation: 

• “Actual platform measurements are preferred over simulated results.  It is understood that early iterations 
through the benchmarking process will necessarily be based on simulation, but these must give way to meas-
urements of actual systems for reliable determinations to be achieved. 

• “If simulations are used, a description of the model and tools used, and the bases for the timing values, should 
be provided. 

• “All data sets should be used.  They have been provided in a range of sizes, so as to test fixed-system scaling 
effects resulting from limited-resource optimizations.  Should particular data sets be unusable for some reason 
(e.g., the data set requires more memory than that which is available), the reason should be reported. 

• “There may be no recompilation or manipulation of the software or hardware between runs producing final 
measurements.  Recall that quantifying the effects of system design decisions is one of the goals of this effort.  
Therefore, the environment must be consistent throughout the tests to ensure validity of measurements relative 
to one another. 
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• “Tests should be repeated enough times to ensure reproducibility. 

• “As the DIS effort is primarily concerned with memory issues, measurement of time to perform I/O operations 
shall ideally be factored out.  However, because the relative need for–and speed of–I/O is determined by the ar-
chitecture, these times should be measured and included in the report.  If possible, the time for these operations 
should be noted, so they can be excluded when appropriate.” 

2.1.3 Required Elements of Results Submission 

Participants were expected to supply the following items as a result of their tests: 
Item Description 

Architecture 
description 

A detailed description of the hardware and software environments utilized during testing 
should be supplied.  The description should be sufficient that strengths and weaknesses 
of the architecture pertinent to the benchmarks can be understood.  Known performance 
measures such as bisection bandwidth and feature size should be included.  Limits of the 
architecture (e.g., maximum of 32 processors, or maximum clock rate of 100Mhz) should 
be identified, and if predicted performance is to be considered, it must be justified in the 
Comments section of the report.  As it is unwise to compare raw timings, even for similar 
architectures, without considering the differences in technology between the systems, this 
description is critical to the process, and should be organized, detailed, and complete. 

Source code If modifications are made to the baseline source code in support of optimized perform-
ance, the revised source code used during testing should be supplied, along with corre-
sponding documentation of the changes, and detailed documentation of the code 
compilation, assembly, and execution. 

Implemen-
tation docu-
mentation 

A detailed record of the implementation, including rationale and approach to optimiza-
tions, is expected.  This is particularly important when deviations from the baseline code 
are employed, or when problems in implementation are encountered.  An accurate ac-
count of the labor required to implement each benchmark is required. 

Output data Output data sets should be made available.  Any deviations from the output data specifi-
cation should be explained. 

Measurements Performance figures for each applicable benchmark should be supplied, along with a 
description of how they were obtained.  Any missing measurements should be explained.  
Metrics in addition to those required by this specification are encouraged, but they must 
be accompanied by documentation of how they were gathered, and how they are perti-
nent to the analysis. 

Comments Participants are encouraged to include any other information pertinent to the benchmark-
ing process, including explanations of special circumstances, or recommendations for 
improving the benchmark.  To be considered, theoretical performance of an unbuilt ar-
chitecture should be given and justified.  Particular attention should be given to the scal-
ability of the architecture with respect to each of the benchmarks in the suite.  Results 
from implementations of other benchmarks are welcomed, also, though these should be 
sufficiently delineated so as not to obscure the data directly relevant to this benchmark. 

Specific metrics relating to individual benchmarks were also developed.  More information can be found in the 
benchmark specifications. 
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2.2 Sources 
All results discussed in this document are based on information delivered to us as part of the DIS effort.  Where not 
otherwise cited, information came from project reports, project status reviews, and Principal Investigator meetings. 

2.3 Selected Metrics 
Work, efficiency, and gain, as used in this document, are defined below. 

2.3.1 Work 

This effort was strongly oriented toward application performance.  A high processing rate was not considered valu-
able unless it was attainable in an application setting. 

Due to this, and the extreme variety of proposed DIS solutions, we elected to measure work at a high level.  The 
amount of work done for a given stressmark was determined by computing the number of abstract elements that 
would concern the programmer.  We specifically avoided counting computations at the level of interest to the chip 
designer, for those values vary from system to system. 

For our purposes, the work units generally would be counted as the number of iterations of an innermost loop given 
in the C language. 

There was some initial objection to this, as some teams observed that a row-oriented access to an array would be 
counted as the same amount of work as a column-oriented access.  We point out that any disparity between the two 
is architecture-dependent and fully introduced by the inefficiencies of memory systems.  The goal of DIS included 
elimination of this disparity, and therefore it must not be represented in our work metric. 

In addition, the amount of work is only utilized as a normalizing metric within the scope of each project separately; 
therefore, this definition creates no project comparison issues. 

2.3.2 Efficiency 

For approaches that do not include the modification of the processor or directly related hardware, it is valid to con-
sider efficiency as a fundamental metric.  Consider that if the processor were never starved for data, operation could 
be continuously maintained at peak rates. 

For these approaches, the question of performance improvement can be formed by asking, “Has the approach re-
duced the data starvation of the processor?”  Better still would be to approach from the other direction: “What hap-
pens if I increase the speed of the processor?  How fast can I make it before the number of stalls becomes 
unacceptable?”  Since designers purposely place this point beyond the limits of normal operation, it may not be ob-
vious for a given off-the-shelf system. 

Raising the efficiency of a system increases performance somewhat, but the true goal of this action is to allow even 
faster processors to be utilized.  In other words, elimination of all cache misses for a given stressmark cannot be an 
isolated goal, because it does not necessarily relieve the overall limitations of the architecture.13 

Ideal performance goals are only measurable using ideal benchmarks.  To find efficiency using imperfect measure-
ments, we must approximate ideal by scaling up from problem sizes that should execute at nearly peak rates.  This is 
somewhat dangerous, since it presumes the peak observed processing rate is congruent with the true peak rate. 

Nevertheless, some of the analyses in this document include efficiency measures based on computed processing rate 
(work per unit time), normalized by the peak observed rate for that same platform configuration. 

                                                           
13 This is perhaps especially clear when one recalls that cache misses can be fully eliminated by simply slowing the 
processor. 
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2.3.3 Gain 

In one form or another, most of the results given in this document have been arranged to show a performance gain 
versus a baseline.  The actual element of performance is identified in each case.  Most often, it is processing rate 
(work per unit time), but the more architecture-specific values of instructions per clock (IPC), and operations per 
second (OPS) were also used when execution times were not reported. 

2.4 Other Assumptions 
The summaries here assume correct execution of the stressmarks.  In many cases this could not be verified. 

Likewise, the timing performed by the participating teams is assumed to be accurate.  Unfortunately, the conditions 
of measurement are not consistent between projects (e.g., some included OS overhead, some utilized rough simula-
tions). 

2.5 Benchmark Suite 
The canonical description and specifications of the DIS Benchmark Suite can be found in Data-Intensive Systems 
Benchmark Suite, Analysis and Specifications14.  This document cannot properly be interpreted without those speci-
fications, and no attempt to reproduce them is made here. 

However, this section does provide a summary of the benchmark algorithms and data as an introduction and quick 
reference.  Additionally, commentary relating to the intent behind some of the requirements and insight about some 
of the data sets is provided. 

2.5.1 Algorithm Selection 

Although many classes of algorithms could benefit from systems with advanced memory or PIM elements, at the 
beginning of the DIS effort, three classes were identified that would provide a representative scope of achievable 
performance improvement for problems of interest to key DARPA programs: 

• Model-Based Image Generation – This class includes generation of synthetic signatures and scenes for targets 
and terrain based on complex models of objects and sophisticated camera models for various sensor types.  Ap-
plications include target recognition, real-time scene simulation for visualization or training, and model-driven 
change detection. 

• Target Detection – This class includes spatial- and frequency-domain target detection in scenes collected from a 
wide range of sensor types.  Applications include automated exploitation and cueing systems. 

• Database Management– This class includes algorithms for index maintenance, storage management, and con-
tent-based query processing.  Applications include sensor data archive management and geographic information 
systems such as the Dynamic Database for Battlefield Situation Awareness. 

From these classes, five algorithms were selected–two from Model-Based Image Generation, two from Target De-
tection, and one from Database Management. 

It deserves mention that at all stages of the program, all DIS participants were solicited for comment and suggestions 
relating to the benchmarks and methods.  When candidate algorithms were tentatively selected, they were presented 
individually to each team prior to the final selection. 

                                                           
14 http://www.aaec.com/projectweb/dis/DIS_Benchmarks_V1.pdf 
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2.5.2 Benchmark Data 

Data sets were developed for use with the benchmark algorithms.  The purposes of the data sets were: 
• to provide uniform input for DIS benchmark tests; 
• to provide a range of input so as to stress the memory-handling capabilities of DIS architectures and soft-

ware; 
• to provide correct output for comparative purposes; and 
• to act as a minimal acceptance test for programs. 

The purposes of the data sets were not: 
• to test the robustness of DIS software; 
• to debug DIS programs; or 
• to precisely mimic real data. 

To satisfy the above purposes, the following requirements were applied: 

Requirement Comment 

Reflect and conform to purposes, pro-
cedures, specifications, and intent set 
forth in DIS Benchmark Suite. 

The data must follow from the purposes set forth above and in 
DIS Benchmark Suite. 

Valid input only  The purpose of this data set is not to test the robustness of the 
programs.  Input data outside the specified valid range is not de-
sired. 

Correct output  “Correct” means as predicted by the specifications (not the in-
house software). 

Many tests for each benchmark The benchmark specifications were developed consistent with the 
goal of performing a great deal of tests with minimal software 
development. 

Each test consists of exactly one input 
file and exactly one correspondent 
output file 

Formats are defined in the Specifications section of DIS Bench-
mark Suite. 

Range of input sizes Span 5-8 orders of magnitude; smallest set should fit in cache; 
largest should require > day on workstation. 

Range of input ‘difficulties’ Try to cover best case, worst case, and average case, if these can 
be known. 

‘Difficulties’ reflective of real-world The relative weighting of cases (best, worst, average) should fa-
vor typical cases, and not extremes. 

Data realism only where needed; al-
ways serve the test. 

Though real sensor or system data need not be utilized, some 
attempt must be made to ensure that the test data contains quali-
ties of the real data where these qualities are pertinent to the test. 

Each operation of each benchmark 
must be stressed 

It is not necessary that each element be stressed independently of 
all others.  For example, in a chain of filters, each filter should 
remove something from the data stream; otherwise, the data can-
not be used as an acceptance test. 
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2.6 Method of Moments 
The first class of algorithms chosen for inclusion in the DIS benchmark suite are Method of Moments (MoM) algo-
rithms, which are frequency domain techniques for computing the electromagnetic scattering from complex objects. 
MoM algorithms require the solution of large dense linear systems of equations.  Traditionally, MoM algorithms 
have employed direct linear equation solvers for these systems.  The high computational complexity of the direct 
solver approach has limited MoM algorithms to low frequency problems.  Recently, fast solvers have been intro-
duced which have low computational complexity.  The potential of these fast solvers to enable MoM algorithms to 
solve larger problems at higher frequencies is ultimately limited by the speed of main memory.  Thus, fast MoM 
algorithms may benefit from the Data-Intensive Systems research effort. 

In MoM algorithms the integral equation form of the Helmholtz equation is discretized by expanding the surface 
currents induced by the applied excitation in N basis functions. Then N test functions are used to convert the integral 
equation to a dense linear N×N system that takes the form Z • J = V.  Generally, N increases as the square of the fre-
quency, and for typical problems, N is greater than 10,000.  In traditional MoM algorithms, which first appeared in 
the late1960’s, the dense linear system Z • J = V is solved by a direct linear equation solution algorithm, which may 
be composed as an in-core or out-of-core solver.  On modern parallel computers, the direct solvers may be extended 
to work on shared or distributed-memory architectures. 

The advantage of MoM algorithms is that they are exact representations of Maxwell’s equations and highly accurate 
simulations are possible.  The disadvantage of the traditional MoM algorithms is that the methods are computa-
tionally intensive, especially as the frequency goes up.  The computational complexity of traditional MoM algo-
rithms includes Ο(N2) integral evaluations to compute the matrix Z and Ο(N2) arithmetic operations to solve the 
system Z • J = V for J.  The memory requirement for traditional MoM algorithms is Ο(N2).  For these reasons, the 
traditional MoM algorithms are generally used only for low frequency problems.  Although traditional MoM algo-
rithms have been highly optimized on a variety of high-performance computing machines, the largest problems 
solved so far are for N on the order of 100,000. 

Recently, new fast MoM algorithms based on fast, iterative linear equation solvers have been introduced.  The itera-
tive solvers rely on numerically stable and rapidly converging iteration procedures, such as the preconditioned 
GMRES method.15  Fast matrix-vector multiply algorithms are used to compute products of the form Z • X used in 
the iterative procedure.  The computational complexity of the fast MoM algorithms is Ο(NlogN).  The memory re-
quirement for the fast MoM algorithms is Ο(N).  This is a remarkable reduction from the Ο(N2) computational com-
plexity of the traditional MoM algorithms, and potentially, allows the solution of much larger problems at higher 
frequencies. 

Rohklin16 has introduced new fast MoM algorithms for the Helmholtz equation, which use iterative linear equation 
solvers and the fast multipole method (FMM) for fast matrix-vector multiplies.  To compute products of the form Z • 
X, the Z matrix is not formed or stored, rather the product Z • X is viewed as a field and approximately evaluated by 
the FMM.  The mathematical formulation of the FMM is based on the theory multipole expansions and involves 
translation (change of center) of multipole expansions and spherical harmonic filtering.  The computational com-
plexity of these new methods is Ο(NlogN) and the memory requirement is Ο(N). 

Building on the FMM approach, Dembart, Epton and Yip17 at Boeing have implemented a fast MoM algorithm in a 
production grade electromagnetics code used by the company for radar cross-section (RCS) studies.  Problems for 

                                                           
15 Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, MA, 1996. 
16 V. Rokhlin,  Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions, Re-
search Report YALEU/DCS/RR-894, Dept. of Comp. Sci., Yale Univ., March, 1992. 
R. Coifman, V. Rokhlin and S. Wandzura, “The Fast Multipole Method for the Wave Equation: A Pedestrian Pre-
scription”, IEEE Antennas and Propagation Magazine, 35, No. 3, June 1993, pp. 7-12. 
17 B. Dembart and E. L. Yip, A 3-d Fast Multipole Method for Electromagnetics with Multiple Levels, ISSTECH-97-
004, The Boeing Company, December, 1994. 
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which the number of unknowns is on the order of 10,000,000 have been solved with this code.  Boeing’s fast solver 
uses the preconditioned GMRES iterative method, which requires only the calculation of products of the form Z • X, 
combined with a multilevel FMM for fast matrix-vector multiplies. 

The potential of the fast MoM algorithms to solve larger problems at higher frequencies, which results from their 
low computational complexity, is impacted by two memory bottlenecks encountered by fast solvers: low reuse of 
data and non-unit stride memory access.  

We introduce the issue of low reuse of data by first considering the direct solvers used in the traditional MoM algo-
rithms.  Since the computational complexity is Ο(N2) and the memory requirement is Ο(N2) for direct solvers, the 
ratio of computation to data access is Ο(N).  For typical problems solved by the traditional MoM algorithms, where 
N is greater than 10,000, data reuse is high.  When data reuse is high, cache is an effective tool for enhancing proc-
essor performance.  The direct solver, in-core or out-of-core, can be organized so that a block of data is placed in 
cache and then reused from cache.  This effective use of cache makes the computer perform as if all the memory is 
as fast as the cache memory.  Similarly, direct solvers can be optimized for shared- or distributed-memory architec-
tures. 

For the fast MoM algorithms, where the computational complexity is Ο(NlogN) and the memory requirement is 
Ο(N), the ratio of computation to data access is Ο(logN).  Indeed, implementation of Rohklin’s translation theorems 
shows that for the translation operations, which are key to the FMM, the ratio of memory access to computation is 3-
to-1.  Thus, cache cannot be used to enhance processor performance, and the speed of fast MoM algorithms is ulti-
mately limited by the speed of main memory. 

In addition to the bottleneck resulting from the low reuse of data, fast solvers based on the FMM face a second 
memory related bottleneck.  The FMM relies on the numerical implementation of spherical harmonic filtering.  The 
filter operates on rectangular arrays of data in three stages.  The arrays are accessed first by rows, then by columns, 
and finally, by rows again.  In the second stage, it is necessary to access memory locations that are not consecutive.  
Thus, the speed of the fast MoM algorithms based on the FMM is ultimately limited by the speed of accessing main 
memory with non-unit stride. 

Fast MoM algorithms, based on efficient iterative linear equation solvers, have the potential to compute the electro-
magnetic scattering from complex objects at frequencies 10 to 100 times higher than possible with traditional MoM 
algorithms.  As pointed out above, the ultimate potential of these fast MoM algorithms is limited by two memory-
related bottlenecks: low reuse of data and non-unit stride. For these reasons we have chosen to use Boeing’s fast 
solver, based the preconditioned GMRES iteration method and the FMM for fast matrix-vector multiplies, as the 
basis for the Method of Moments Benchmark.  The key FMM kernels represented in the benchmark are the transla-
tion operations and spherical harmonic filtering. 

2.6.1 Method of Moments Data 

Information was not available for this report. 

                                                                                                                                                                                           
M. A. Epton. and B. Dembart, “Multipole Translation Theory for the 3-D Laplace and Helmholtz Equations”, SIAM 
J. Sci. Comput. 16, No. 4, pp. 865-897, July, 1995. 
M. A. Epton and B. Dembart, Low Frequency Multipole Translation Theory for the Helmholtz Equation, 
SSGTECH-98-013, The Boeing Company, August, 1998. 
M. A. Epton and B. Dembart, Spherical Harmonic Analysis and Syntheses for the Fast Multipole Method, 
SSGTECH-98-014, The Boeing Company, August, 1998. 
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2.7 Simulated SAR Ray Tracing 
The simulation of Synthetic Aperture Radar (SAR) provides a cost-effective alternative to real data collections.  In 
contrast to deployed sensors systems, whose operational parameters are fixed, computer simulations allow continu-
ous variation of system and scene parameters.  They have been used to simulate the performance of hypothetical 
sensors systems and to predict the signature of targets from a large number viewing angles as well as target signature 
that are inaccessible.  These simulated target signatures have been used to design, test, and have been included as 
part of ATR systems.   

Phenomenological models of targets and backgrounds and their interactions are the theoretical foundation of the 
computer simulations.  For example, both image-domain and phase-history-domain approaches have been used to 
simulate synthetic aperture radar (SAR).  The image domain approach uses a generalization of the physical optics 
approximation to compute target scattering.  Such an approach is very amenable to use with a solid geometry target 
model sampled by ray casting.  The phase history domain approach uses a variety of methods to compute target scat-
tering: physical optics (PO), physical theory of diffraction (PTD), method of moments (MoM), and others.  Hybrid 
implementations of these two methods have also been developed.  The SAR simulation method analyzed for this 
benchmark is based on the image domain approach.  

 
A typical airborne SAR collection geometry is illustrated in the figure above.  Assume far field conditions and a 
narrow-band signal.  Let α and β denote, respectively, the receive and transmit polarizations of the radar, u(t) the 
transmitted waveform, and γ(r') the so-called SAR reflectivity of the scene, The radar return signal is generally rep-
resented as 

where S is the illuminated portion of the scene, R = r - r' is the distance from the radar to the point r' on S, c is the 
speed of light and K is a system constant. In essence, the model is based on the argument that the return from a dif-
ferential surface element ds', located at r', is a replica of the transmitted signal.  This signal is delayed in time by the 
two-way propagation time from the radar to r' and back, and modified by the reflectivity of the surface element.  It 
can be shown that such a model is consistent with physical optics, and an explicit formula for γ can be obtained. 

( )ν γαβ αβ( ) ( ' ) 't K r u t dsR
c

S

= − 2
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It is customary to demodulate ν(t) by mixing with a reference signal h(t), yielding 

s(t) = h(t)v(t) 

Let Γ(f) denote the spatial Fourier transform of γ(r): 

Γ(f)  = ℑ{γ (r)} 

A single range record s(t) can be interpreted as corresponding to the values of Γ(f) over a radial line segment in the 
spatial frequency domain. The complete record of s(t) for a sequence of pulses transmitted and received at positions 
along the platform trajectory constitute a so-called phase history.  

The fact that the collected data corresponds to the Fourier transform of the reflectivity density suggests that a recon-
struction (image) of the reflectivity can be obtained by inverse Fourier transformation of the data.  It will be at best a 
partial reconstruction because we have only partial data.  For a linear trajectory, the phase history represents a planar 
surface in the spatial frequency domain over which the value of Γ(f) has been sampled. The most that can be ob-
tained is a two-dimensional image.  Letting A(f) denote a weighted, two-dimensional processing aperture over the 
data surface, the SAR image formation process is given by 

g(r) = ℑ-1 { A(f) Γ(f) } 

Additional insight is gained by noting that the image formation process is mathematically equivalent to the convolu-
tion 

g(r) = a(r)∗γ(r)  

where 

a(r) = ℑ-1 { A(f) } 

is known as the spatial impulse response.  

 
Simulation of the SAR system can be achieved by synthesis of the phase history followed by aperture weighting and 
inverse transformation, or by direct computation of the reflectivity density followed by convolution with the spatial 
impulse response. Both methods have been implemented in SAR simulation programs like X-PATCH and 
RADSIM.  

In the process of analyzing this approach, the simulated SAR technique can be broken down into three steps as seen 
in the figure above. 
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First, is the process of sampling a scene database made of polygons, splines, and Constructive Solid Geometry.  A 
ray tracing system is used to accomplish this sampling, by simulating how the radar energy bounces through the 
scene.  

Ray tracing is a process where rays are fired from a viewing window into the scene and recursively traced through 
their specular reflections.  Each ray is defined as vector with a starting position at the sensor and a direction defined 
by the pixel it passes through on the viewing window, in this case our synthetic aperture.  Each ray is tested against 
all objects in the scene to see if an intersection can be found.  The process of finding the intersection involves find-
ing the roots of a system based on the combination of the vector and object. If multiple intersections are found the 
closest intersection is used.  Once an intersection is found, the object ID and the intersection coordinates are re-
corded.  In addition, several other properties at the intersection point are determined.  These are surface normal, cur-
vature, surface material type, and length of the ray from the intersection point to the origin of the ray.  Using the 
surface intersection normal and the incoming ray, a reflected ray is calculated along the perfect specular reflection 
direction.  This ray is fired from the current intersection point and the next intersection is found.  This recursive 
process continues until either the ray leaves the scene, or a preset number of reflections are found.  The intersection 
results of each original ray and all of its reflections create a ray history that contains all the intersection information, 
normally stored in a linked list.  The output of the ray-tracing section is a ray history for each pixel in the image 
plane.  

In programs like X-PATCH, the ray-tracing portion of the process consumes 50% to 60% of the total computation 
time.  With this being the major time component in the SAR simulation process, it is a prime candidate for paralleli-
zation.  Parallel ray tracing has been investigated by several researchers and is not a simple problem.  This process 
will be the major thrust of the benchmark effort for simulated SAR imagery. 

The second step is the process of converting the ray-traced information, the ray history, into the electromagnetic 
(EM) response of the sampled scene data.  Here each ray path is analyzed to generate a fully polarimetric EM re-
sponse solution.  This is a linear process and does not consume a large amount of time.  This step, in the SAR simu-
lation, would be a trivial process to parallelize because each ray history is independent of all the others.  Due to the 
small amount of time and the simplicity of parallelization, this portion of the process is not considered as part of the 
benchmark. 

The final step in the simulated SAR process is converting the 2-D array of EM responses into complex images.  This 
is accomplished by mapping the 2-D array of EM responses into the slant plane.  This slant plane image is then con-
volved with a system Impulse Response (IPR) to form a complex image that can be detected and viewed.  

This final step is a unique combination of processes, from the viewpoint of parallelization, and does present the sec-
ond-highest consumer of CPU time.  Creating a parallel version of this section of the process will stress data-
passing, as EM responses are mapped onto a rectangular grid called the slant plane.  This output then runs through a 
standard convolution.  Each of these steps will require different lay-outs of memory and should present some unique 
problems as a parallel implementation.  For this reason, and because this step is a large time consumer, it is part of 
the simulated SAR benchmark. 

2.7.1 SAR Ray Tracing Data 

Information was not available for this report. 
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2.8 Image Understanding 
Image processing algorithms represent the third type of algorithm chosen for study.  The applications of interest 
include target detection and classification.  A sampling of these algorithms was chosen for this benchmark identify-
ing bottlenecks that are common to image processing applications.  The sampling contains algorithms that perform 
spatial filtering and data reduction.  The algorithms selected for the benchmark are a morphological filter compo-
nent, a region of interest (ROI) selection component, and a feature extraction component.  These form the Image 
Understanding Sequence as shown in the figure below.  The morphological filter component provides a spatial filter 
to remove background clutter in the image.  Next, the ROI selection component applies a threshold to determine 
target pixels, groups these pixels into ROIs, and selects a subset of ROIs depending on specific selection logic.  Fi-
nally, the feature extraction component computes features for these selected ROIs. 
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Image Understanding Sequence 

Transformations that generate images from symbolic input, as well as Fourier Transforms, were excluded, since 
these are addressed in other portions of the Benchmark Suite. 

The input required by the sequence is a set of parameters and an image, V.  The first step in the sequence is a spatial 
morphological filter component generating image W.  Then, the ROI selection component applies a simple threshold 
and groups connected pixels into ROIs (or targets) contained in image W.  This component then computes initial 
features for each ROI in image W, and selects candidate ROIs, depending on the values of these features.  These 
selected ROIs are stored in object image, O.  The initial features for each selected ROI are stored in the list regions.  
Lastly, the feature extraction component computes additional features for the selected ROIs.  The final output is a 
feature list, features, containing all the features calculated for each selected ROI. 

Each algorithm has two associated costs: operational and pixel addressing.  The operational cost is a measure of the 
computational burden placed upon the processors to execute the algorithm, and pixel addressing cost is a measure of 
the amount of memory usage or access that is required.  A brief description and analysis of each component, includ-
ing its bottlenecks, follows.  

The morphological filter component chosen for the benchmark is a relatively straightforward procedure, designed to 
remove background clutter and retain objects of interest.  The total cost of the morphological filter is determined by 
assuming the kernel is applied over the entire input image, although in practice the kernel is usually only applied 
over a subset of the image (the input image less a portion at the edges).  The address-to-operation ratio is approxi-
mately the same for each approach.  The filter utilized in this benchmark includes three distinct phases: erosion, di-
lation, and difference.  The number of operations for the filter is 

size(V) 4size(K) +1[ ] 
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where V is the input image, K is the kernel, and size(X) is the total number of pixels in X.  The operational cost con-
sists of two multiplies, one subtraction, one minimum comparison, and one maximum comparison.  The number of 
pixel addresses is 

size(V) 4size(K) + 5[ ] 

where the kernel and input image are accessed multiple times as the kernel is applied over the input image.  The 
address to operation ratio is then 

(4size(K) + 5) (4size(K) +1) 

which is bounded in the range {1, 1.8}. 

The ROI selection component of the sequence involves a threshold phase, a connected-component phase (where 
detected pixels are grouped into objects), an initial feature extraction phase, and a selection phase (where ROIs are 
selected based on the values of the initial features).  The initial feature extraction phase measures five characteristics 
of the object region.  Three of these–centroid, area, and perimeter –are descriptive of the shape and location of the 
ROI.  The other two–mean and variance –are statistical measures of amplitude over the pixel population of the ROI.  
The threshold phase has an address-to-operation ratio of two.  The operational and pixel addressing costs associated 
to the connected component phase, the initial feature extraction phase, and the selection phase vary greatly, depend-
ing on the implementation and the data involved, so no analysis of these costs is provided here. 

After selecting ROIs, additional features are calculated.  These give a rough measure of the texture of each ROI.  A 
gray-level co-occurrence matrix (GLCM) contains information about the spatial relationships between pixels, by 
representing the joint probability that a pixel with a given value will have a neighboring pixel at a particular distance 
and direction with another chosen value.18  Since this matrix is square, with dimensions equal to the number of pos-
sible pixel values, it provides more information than can easily be analyzed.  Statistical descriptors of the co-
occurrence matrix have been used as a practical method for utilizing these spatial relationships.  Furthermore, Unser 
designed a method of estimating these descriptors without calculating the GLCM, instead using sum and difference 
histograms.19  The descriptors chosen as features for this benchmark are GLCM entropy and GLCM energy, and are 
defined in terms of a sum histogram, sumHist, and a difference histogram, diffHist.  These descriptors are calculated 
for each of two distances and four directions. 

It is typical in target detection systems to calculate many features to be used in a target recognition step.  The ideal is 
to choose the fewest and cheapest features possible that provide the best detection result.  The cost for the feature 
extraction component is dependent upon the number of features or targets present in the input image which can 
range from zero to several thousand in typical applications.  This makes the algorithm very difficult to execute effi-
ciently, since many features will have a high computational cost with a small memory access cost, while a few will 
have a low computational cost with a high memory access cost.  Thus, an a priori-implementation for feature extrac-
tion is generally not possible.  Consequently, there is no analysis provided here of the cost involved to calculate 
these features. 

The two main bottlenecks which occur in typical target recognition applications are the result of manipulations of 
large amounts of data while expending little computational effort, and of smaller amounts of data in computationally 
intensive functions.  The intent of this benchmark is to represent these bottlenecks within the sequence, so that at-
tempts to remove these bottlenecks may be examined.  

2.8.1 Image Understanding Data 

The following requirements were developed in anticipation of use of synthetic data. 

                                                           
18 Parker, J., Algorithms For Image Processing And Computer Vision, Wiley Computer Publishing, 1997. 
19 Unser, M., “Sum and Difference Histograms for Texture Classification,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol. PAMI-8, 1:118-125, 1986. 
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Requirement Comment 

Input data format See DIS Benchmark Suite, Section 4.2.4.1. 

Phase component of complex input 
should be random. 

The magnitude detection is a local calculation; there is no need to 
bias the statistics.  This requirement implies that the input image 
should be “reverse-calculated” from a magnitude image. 

Precision of magnitude and phase val-
ues should be to extent of floating-
point number specifications. 

Acceptance tests require precision to at minimum the specifica-
tion put forth for numbers.  Since inphase and quadrature values–
which constitute the input of concern–are “reverse-calculated” 
when generating these tests, the results (magnitude) should be 
precise.  See DIS Benchmark Suite, sections 3.6 and 3.7 for num-
ber specifications. 

Image sizes (order N pixels) 103–109; at least 7 sizes, spaced more-or-less regularly. 

Image shapes Always rectangular upon input; one of the two dimensions should 
never exceed 4096 pixels; short dimension should be more-or-
less evenly distributed between horizontal and vertical; warping 
rotation should be slight on images with very large (>>1) or very 
small (<<1) aspect ratios, to avoid extreme growth of rectangular 
storage requirements after warping. 

Warping coefficients should always 
include components other than transla-
tion and scale. 

Without rotation or distortion, warping can be a trivial matter of 
memory-stride adjustment (and some interpolation), which would 
defeat the purpose of this portion of the test. 

Kernel and stencil ‘shapes’ should 
have 2-dimensional extent. 

‘Shape’ refers to ‘on’ pixels only.  Kernels and stencils should 
always have nontrivial extent in two dimensions, so that memory 
access for linearly stored images requires offset calculation. 

Kernel and stencil sizes should vary 
generally in proportion to image size. 

In real use, kernel and stencil sizes are determined by expected 
target sizes, sensor resolutions, and perhaps analyses of back-
ground data.  Generally, we assume larger imagery implies higher 
resolution, and therefore larger kernels.  There should be some 
variance of kernel sizes independent of image size, though, so 
that architectural dependencies on kernel sizes may be observed.  
Each kernel dimension should never exceed one fifth of its corre-
sponding input image dimension. 

Kernel shapes and sizes associated 
with pixel magnitude (target, back-
ground, noise) models 

Morph operations should always filter something out of the im-
age. 

CFAR stencils convex, off-center, on-
surround. 

The way CFAR is defined for this benchmark, the ‘background’ 
pixels should be defined in a neighborhood around–but not in-
cluding–the target pixel.  There appears to be little value to the 
test to define the stencil shape in any other way. 

CFAR threshold value set according to 
pixel model 

Between 100 and 10√n objects should result from each test, where 
10n is the number of pixels in the input image. 

Varying output features Centroid X & Y – even distribution (within image boundaries 
after warping and edge adjustment) 

Area – 100 ≤ area ≤ imageArea/5, Gaussian 
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Perimeter – avoid excessively high values (compared to area) 
indicating highly complex shapes.  (Note that when objects are 
small, perimeter values will always be high relative to area val-
ues, due to quantization effects.) 

Mean – necessarily biased toward bright values 

Variance – arbitrary distribution 

Output data format See DIS Benchmark Suite, Section 4.2.4.3. 

Ultimately, suitable imagery from physical sensors was found which satisfied the needs of the benchmark.  Syn-
thetic images were not generated. 

2.9 Multidimensional Fourier Transform 
The Fourier Transform has wide application in a diverse set of technical fields.  It is utilized in image processing and 
synthesis, convolution and deconvolution, and digital signal filtering, to name a few.  In fact, the transform is util-
ized within both the Ray-Tracing and Method of Moments benchmarks described elsewhere in this document.  
However, special interest in the Fourier transform merits its independent inclusion in this benchmark suite.  Specifi-
cally, the interest is in the nature of the memory access patterns, which are indicative of a large class of problems. 

The multi-dimensional Discrete Fourier Transform (DFT) is defined as 

  
F(n1, n2,K,nN ) = L

kN =0

NN

∑ e2πik NnN NN Le2πik1n1 N1 f k1, k2 ,K,kN( )
k1=0

N1

∑  Eqn. 1 

where f  is an input complex multi-dimensional array of size  N = N1 × N2 ×L× NN , and F  is the output 
forward transform of f .  The Fourier Transform is rarely implemented directly as Equation 1, since the process 
would require Ο(N2) operations.  Instead, the transform can be accomplished in Ο(Nlog2N) operations, or less, using 
one of a series of methods generically called Fast Fourier Transforms (FFT).  These FFT methods exploit one or 
more mathematical properties of Equation 1 to reduce the required number of operations. 

The bottleneck associated with DFTs that is of interest here is the non-unit-stride memory access associated with the 
transform.  Part of the subscripts of Equation 1 can be “pulled out” of the summations (i.e., the exponential with the 
subscript kN  can be pulled outside of the sum over kN-1  etc.), which shows that the multi-dimensional DFT can be 
represented by a series of one-dimensional DFTs: 

  
F n1,n2,K,nN( )= FN FN−1 FN −2 LF1 f k1,k2,K,kN( )( )( )( )( ) Eqn. 2) 

where Fk  is a one-dimensional DFT over the specified index.  The aspect of Equation 2 to note is that for whatever 
memory access the inner loops attempt, the outer loop will always be “opposite” or irregular, which prevents a unit-
stride access.  Rearrangement of the summations or manipulation of the equations can alleviate this memory access 
bottleneck to some extent, but some non-unit-stride access is present with most DFT implementations. 

In order to simplify the implementation and specification of this benchmark, the DFT is limited to three-dimensional 
transforms only.  The implementation of a 3-D transform is complex enough to give an indication of the perform-
ance of the architecture on higher dimensional transforms, but simple enough to be relatively easy to implement.  
The inclusion of one- or two-dimensional transforms would not significantly add any other performance information 
regarding the candidate architectures.  In addition, one- and two-dimensional input can be approximately tested by 
specifying the length of the remaining dimensions of the array to one. 
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2.9.1 Discrete Fourier Transform Data 

2.9.1.1 Derived Requirements 

Requirement Comment 

Input data format See DIS Benchmark Suite, Section 4.2.3.1. 

Problem size trend consistent within 
test 

For some sequences, the problem size should grow; for others, it 
should shrink. 

Number of dimensions = 3 All problems are 3-D, but some have one or two dimensions of 
size=1; those are effectively 1- or 2-D. 

Total size of each set large Each sequence should be enough to keep the system busy for a 
long time; there is no need to make small sequences.  Some vari-
ability is useful simply so that users can test sequences that do not 
require tremendous quantities of resources. 

Number of repeats inversely propor-
tional to volume size 

Each image should be repeated enough times to keep the proces-
sor(s) busy for a significant period.  For very large images, the 
number of repeats necessary to do this diminishes.  Each volume 
of the test should be repeated such that the total number of points 
done for that volume is as close as possible to 107. 

Size of each non-unity dimension of 
volume on order of between 102 and 
104. 

There is little point testing very small or oblong transforms.  
Similarly, volumes very large in one dimension are likely to be 
very small in another. 

No more than 20 volumes in each set. Rather than add more volumes to make a set larger, make the 
volumes larger. 

Output data format See DIS Benchmark Suite, Section 4.2.3.3. 

2.9.1.2 High-Level Data Design 

Model Type Name & Description 

Input Size M N≈106. 
G N≈109. 
T N≈1012. 

Where N is defined as the sum of the products of the number of repeats for each input 
volume and the number of points in that input volume. 

Dimensions 1 Two of three dimensions are size=1. 

2 One of three dimensions is size=1. 

3 Zero of three dimensions are size=1. 

Trend None Volume size is arbitrary. 

Grow Volume size always increases. 

Shrink Volume size always decreases. 

(This should be handled by sorting, rather than by restricting sequential randomiza-
tions.) 
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2.9.1.3 Test Sets 

Set Name Input Size Dimensions Trend Comments 
FT1 M 3 None  
FT2 G 2 Grow  
FT3 G 3 Shrink  
FT4 T 2 None  
FT5 T 3 Grow  
FT6 T 3 Shrink  
FT7 G 2 

(20Kx800x1) 
None Special test for GPS calculation; all 

volumes have one dimension of 
exactly 20K, one of exactly 800, 

and one of exactly 1. 
FT8 T 2 None Identical to test FT4, except no 

repeats. 

2.10 Data Management 
The fifth area in which the DIS benchmark suite attempts to measure performance improvement is in data manage-
ment, specifically in the area of DBMS.  Applications for traditional DBMS have been dominated by archival stor-
age and retrieval of large volumes of essentially static data.  Some newer applications, such as the Dynamic 
Database for Battlefield Situation Awareness, demand management of complex, dynamic indices in addition to the 
data. 

The objective of this benchmark is to measure the performance improvement of a given hardware configuration for 
certain elements of traditional DBMS processing.  Performance improvements due to sophisticated database design 
or special software implementation are avoided and not intended to be part of the benchmark.  This benchmark fo-
cuses on two weaknesses of conventional DBMS implementations: index algorithms and ad hoc query processing. 

Large volumes of data in a DBMS are typically referenced by an index structure.  The index can be used instead of 
brute-force searches over all the data when a query is made.  The index defines one or more elements of the data 
entries as key values.  Thus, the key values are specified in advance, and the DBMS maintains a separate index 
structure based on them.  The index is used to accelerate query processing by minimizing the amount of data that 
must be accessed to satisfy the query. 

Two assumptions typical of conventional algorithms are that the data will be predominately static, and that operation 
can be suspended for index maintenance.  Neither assumption holds for the Dynamic Database or other dynamic 
information systems, and current applications drive standard indexing schemes into frequent wholesale index regen-
eration, yielding unacceptable performance.   

The index structure allows efficient searches over a database when the query can use a pre-defined key value.  Que-
ries that do not use a key value are called ad hoc, non-key, or content-based queries.  This query type requires a 
brute-force search over all database entries.  Conventional applications usually process an ad hoc query in two 
stages: an index-based search is used for the index keys in the query formulation, if any, and brute-force search is 
performed on the results of the index-based search.  These brute-force searches are a bottleneck in a typical DBMS.  
The performance impact of non-key queries can be reduced by parallel searches of the data, which may be applica-
ble to specific hardware architectures, or by partitioning the data. 

Partitioning schemes provide an additional performance boost for a general database design where the primary ob-
jective is to separate areas of the database into logical sections, each of which is then indexed by its own scheme.  
The partition allows more efficient searches, when the sections have been chosen well, or when an optimal scheme 
is known a priori. It also supports parallel searches across partitions. 

Bottlenecks traditionally associated with DBMS primarily occur in query processing, and the majority of work done 
to enhance performance has been in this area.  Much of this query optimization has increased the query response 
speed at the expense of maintaining the index over the lifetime of the database.  By definition, an index requires an 
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increase in overhead or up-front processing in favor of quicker, cheaper searches.  Typical command operations 
such as insert and delete have generally not been optimized.  This reiterates the implied assumption of the existence 
of periods during operation when user interaction can be suspended to deal with index management.  The cost asso-
ciated with index management over the operation life of the database represents a new measure of performance for 
advanced data management applications, and a corresponding new bottleneck. 

The indexing method chosen for use within this benchmark is an R-Tree structure.  The R-Tree index allows the key 
to represent spatio-temporal data, which makes the R-Tree particularly applicable to geographic information; data-
base vendors commonly support it.  The R-Tree structure is as close to a de-facto standard for representing such data 
in a database context as exists today. 

The R-Tree index is a height-balanced tree containment structure, that is, nodes of the tree contain lower nodes and 
leaves.  Thus, the tree is hierarchically organized and every level in the tree provides more detail than the previous 
level.  The indexed data object is stored only once, but because of the containment structure, keys at all levels are 
allowed to overlap.  This may cause multiple branches of the R-Tree to be searched for a query whose search index 
intersects multiple nodes. 

A general measure of index maintenance cost for separate command operations is the number of node accesses re-
quired for each operation.  Other measurements of cost become increasingly software-dependent, and are avoided in 
this analysis.  A generic R-Tree implementation, which is given later in this document, has three command opera-
tions to measure: insert, delete, and query.  Because the R-Tree is a height-balanced structure, the total number of 
paths for a full tree is given by: 

N = 2 k −1 F
k =1

h

∑  

where N is the number of paths, h is the height of the tree, and F is the fan or order of the tree.  Traditional perform-
ance measures have focused on the query response: for the generic R-Tree the minimum number of node accesses is 
h, which is expected from a height-balanced tree, and the maximum number of node accesses is N, or a complete 
node search over all possible paths.  The maximum number is unique to the R-Tree or similar overlapping index 
trees and represents a significant bottleneck.  The problem is exacerbated for improperly managed index structures, 
and can be alleviated by efficient software implementations and improved hardware architectures that allow more 
efficient or parallel searches. 

Index management over the operation of the database represents a new type of bottleneck for advanced applications.  
The cost of maintaining the index can be estimated in the same manner as for query commands, by determining the 
number of node accesses required to complete the command in both the best and worst cases.  A descriptive estimate 
of the average case is also given, with the caveat that the average case is highly implementation-dependent, and will 
vary for each system. 

The insert operation has three separate phases: a search over all paths, insertion (which may cause node splitting), 
and index key adjustment.  The best case occurs when insertion does not require node splitting and no parent keys 
need to be adjusted; this yields a cost of N node accesses.  The worst case does require splitting along each parent, 
and all parent keys are adjusted; this yields a cost of N+2h node accesses.  An average insert would tend to require 
parent key adjustment and periodic node splitting.  Thus, the average insert cost would tend towards the maximum 
cost. 

The delete operation has two phases:  a search for the data to be deleted, and a possible key readjustment.  The best 
case has a cost of h node accesses, which represents no key adjustments and an immediate “one” path search for the 
data.  The worst case has a cost of N+h, which represents a full search of the data and an all parent key adjustment.  
The average cost of a delete operation tends to the minimum case, since the operation would include key adjustment 
but probably not a full search. 

The costs of the insert and delete operations are greater than or equal to the query operation in both the best and 
worst cases.  Thus, index management over the operational life of the database represents a significant performance 
bottleneck when the data is dynamic. 
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This benchmark has been developed to measure the performance improvements of new hardware architectures for 
both index maintenance and non-key queries, which represent the two significant performance bottlenecks.  One 
goal is to remove or “level” the algorithmic component over all of the architectures, without preventing any new or 
unique software implementations that would allow a significant performance improvement due to exploitation of 
special hardware features.  This is done by defining the benchmark as the implementation of a highly simplified 
database with a specific index structure.  The database supports only three simple aggregate data objects whose pri-
mary difference is in size.  The use of different sizes of data objects is intended to prevent optimization of the im-
plementation for an object of a specific size, and the sizes themselves were chosen to prevent similar multiples.  The 
objects are aggregate in that they contain a set of data attributes or parts that are linked together as a list.  An ad hoc 
query uses an attribute of the object for non-key searches.  This type of search with simplified objects is relatively 
simple to implement, but is representative of more complicated database behavior such as object traversal.  This 
benchmark requires the use of the R-Tree structure, but the participant is encouraged to modify or develop addi-
tional implementations tailored for new architectures. 

The DIS benchmark metrics provide measurements of the candidate architecture’s ability to handle the “highest” 
load when the number of users is large and the system resources are taxed to their limits.  The benchmark simulates 
this maximum resource utilization by issuing the index commands in a batch rather than a stream mode.  A stream 
mode would more closely mimic a “real” DIS application, allowing for multiple users and possible “down” time for 
index maintenance.  However, this benchmark is primarily interested in the extreme condition, where down-time, in 
which a database can perform index maintenance with no cost to the users, is assumed not to exist.  The perform-
ance on successful completion of the entire data set with its multiple commands is the primary metric of this bench-
mark, and this must include the time required for index maintenance since this will directly affect the users under 
extreme conditions.  Participants are allowed to introduce artificial lags to the command input to simulate a stream 
mode, but the times reported for individual command completion and overall set completion must include the added 
lag times. 

2.10.1 Data Management Data 

2.10.1.1 Derived Requirements 

Requirement Comment 

Input data format See DIS Benchmark Suite, Section 4.2.5.1. 

Distribution of small, medium, and 
large objects is statistically flat. 

It was initially felt that small data sets should contain mostly 
small objects, and large data sets should contain mostly large 
objects.  However, since the object “size” really has to do with 
number of attributes (and not necessarily the memory occupied 
by the object), that requirement has no real meaning or need.  
Instead, small, medium, and large objects are distributed evenly 
across the population. 

Transaction list lengths 103–109; at least 7 sizes, spaced more-or-less regularly. 

Number of data objects Peak at 1-3 orders of magnitude less than number of transactions. 

Hypercubes Hypercubes should be sized and shaped in proportion to the entire 
database volume as if they represented military vehicles or (occa-
sionally) buildings in a theater of battle.  Object hypercubes are 
expected to overlap due to reporting and quantization errors, but 
would not overlap by more than 50%, except in rare cases.  Un-
usually shaped hypercubes should occur, but should be similarly 
rare. 

Vary the “fan” parameter For some tests, a set of transactions should be held constant while 
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the fan parameter varies between tests.  Otherwise, generally rea-
sonable fan values should be used (fan value choice is influenced 
most by size and overlap of hypercubes).  However, keep in mind 
that the purpose of the test is to measure performance on index 
maintenance, not to emulate a realistic database.  Small fan sizes 
force larger indices for same-size databases. 

Non-key (string) attributes need to 
vary. 

There needs to be sufficient variance such that an implementer 
cannot simply use markers in place of actual storage of attribute 
contents.  Actual character values of attributes may be random, 
though known substrings must be included at a random locations 
within the string, so that searches on these attributes can reliably 
find multiple answers.  At least one known substring is required 
for each attribute; more are preferable. 

Lengths of string attribute values 
should vary. 

Variance here allows attribute contents to be stored in variable-
length records, if desired.  Median lengths would be about 1/8 of 
maximum, with a relatively small variance.  Long strings, though 
rare, are needed to ensure specifications are met. 

No more than one query per insert or 
delete; actual ratio to vary 

In practice, this may not be a realistic proportion.  Although the 
proportion is significant to database design consideration, here 
we have specified the tree structure and the fact that tree mainte-
nance is the stressmark of interest.  Therefore, insert and delete 
operations are of primary concern; queries are secondary, and are 
used mostly to provide verification in the form of output. 

The actual ratio of operations should vary between and within 
tests. 

Bias transaction order for insertion and 
deletion on a test-by-test basis 

Input streams can affect the frequency of redistribution due to the 
order of transactions.  Some orderings will result in more index 
management for a given implementation than other orderings.  
Where possible, vary the bias of the orderings on a test-by-test 
basis, as opposed to within a given test, so that an implementa-
tion’s reaction to this bias is measurable. 

At least one non-key query per test Most queries will use at least some keys, but all tests should en-
sure that at least one query that is not based on any key values is 
issued. 

Total volume of DB area must not 
exceed value that can be contained by 
float. 

Various elements of the R-tree implementation must calculate the 
volume of a hypercube; the result should fit within a single-
precision float.  The root node will indicate a hypercube of the 
entire DB volume. 

Output data format See DIS Benchmark Suite, Section 4.2.5.3. 

2.10.1.2 Model Design 

Model Type Name & Description 

Input size 3: Approximately 103 transactions 

4: Approximately 104 transactions 

5: Approximately 105 transactions 
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6: Approximately 106 transactions 
7: Approximately 107 transactions 
8: Approximately 108 transactions 
9: Approximately 109 transactions 

(“approximately” here means ±102) 

Peak tree size Small: Approximately (Input size / 103) objects 
Large: Approximately (Input size / 101) objects 

(“approximately” here means ±(Input size / 105)) 

Tree size profile (All profiles general only; small fluctuations are assumed; DB always starts with zero 
entries, but may end with many.) 

1: Full size. 

Transactions Processed

Objects
Stored

 
2:  Full size early, then taper. 

Transactions Processed

Objects
Stored

 
3:  Slow growth. 

Transactions Processed

Objects
Stored

 
4:  Very large fluctuations.  (Number and character of fluctuations not necessarily 
represented by diagram.) 

Transactions Processed

Objects
Stored

 
Tree size fluc-

tuations 
Minor: Not more than 5% (of number of objects) deviation from profile. 
Major: Not more than 20% (of number of objects) deviation from profile. 

Tree fan 2: Fan = 2. 
3: Fan = 3. 
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4: Fan = 4. 
8: Fan = 8. 

Object hyper-
cube overlap 

None: Object hypercubes never overlap. 

Low: Object hypercubes overlap at the time of their insert on average once per 25 
object insertions. 

High: Object hypercubes overlap at the time of their insert on average once per 5 
object insertions. 

Query rate Low: Average one query in 30 transactions. 
Med: Average one query in 10 transactions. 
High: Average one query in 2 transactions. 

2.10.1.3 Test Sets 

There are 4032 possible permutations of the seven models.  This many tests would be excessive, but finding a subset 
that adequately represents the whole is important. 

Of the possible permutations, some are meaningless.  For example, the Tree Size Fluctuations model would be 
meaningless for any test that has a Tree Size Profile of ‘4’ (indicating very large fluctuations).  Similarly, very large 
transaction sets generally would not utilize small fan parameters, and vice versa.  Hence, we eliminate tests that in-
clude the following combinations: 

• Tree size profile = 4; Tree size fluctuations = Minor 
• Input size = 3; Tree fan = 4,8 
• Input size = 4; Tree fan = 8 
• Input size = 4; Peak tree size = Small; Tree fan = 4 
• Input size = 6, 7, 8, 9; Tree fan = 2 
• Input size = 8, 9; Tree fan = 3 
• Input size = 3, 4, 5; Peak tree size = small 
• Input size = 7, 8, 9; Peak tree size = large 
• combinations = 1323 

Following these eliminations, there are still 1323 possible permutations.  The remaining set is therefore selected 
such that there is representation across the spectrum of input sizes and other parameters, without necessarily provid-
ing a datum for every permutation. 

 

Set Name Input size Peak tree 
size 

Tree size 
profile 

Tree size 
fluctua-

tions 

Tree fan Object 
hyper-
cube 

overlap 

Query 
rate 

 3, 4, 5, 6, 
7, 8, 9 

(7 of 7) 

Small, 
Large 

(1 of 2) 

1, 2, 3, 4 

(3 of 4) 

Minor, 
Major 

(1 of 2) 

2, 3, 4, 8 

(2 of 4) 

None, 
Low, High 

(1 of 2) 

Low, Med, 
High 

(1 of 2) 
DM1 3 Large 4 Major 2 None Med 
DM2 3 Large 4 Major 2 None High 
DM3 3 Large 3 Minor 2 None Low 
DM4 3 Large 1 Minor 2 Low Med 
DM5 3 Large 1 Minor 3 Low Med 
DM6 3 Large 2 Minor 3 None Med 
DM7 4 Large 3 Minor 2 Low High 
DM8 4 Large 1 Major 2 None Low 
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DM9 4 Large 1 Minor 2 None Low 
DM10 4 Large 4 Major 2 High Med 
DM11 4 Large 2 Minor 2 High Low 
DM12 4 Large 2 Minor 3 Low Low 
DM13 5 Small 2 Major 2 High High 
DM14 5 Large 2 Minor 2 Low Low 
DM15 5 Small 3 Minor 3 None High 
DM16 5 Large 3 Minor 3 Low Low 
DM17 5 Small 4 Major 8 None High 
DM18 5 Large 3 Major 8 None High 
DM19 6 Small 4 Major 3 Low High 
DM20 6 Large 2 Major 3 High Low 
DM21 6 Small 1 Major 4 High High 
DM22 6 Small 2 Minor 8 None High 
DM23 6 Large 1 Major 8 High Med 
DM24 6 Large 3 Major 8 High High 
DM25 7 Small 4 Major 3 None High 
DM26 7 Large 1 Minor 3 High Med 
DM27 7 Large 2 Minor 3 Low Med 
DM28 7 Large 2 Major 3 Low Low 
DM29 7 Small 2 Major 8 None High 
DM30 7 Small 4 Major 8 High Med 
DM31 8 Small 3 Major 4 Low High 
DM32 8 Small 3 Minor 4 High Low 
DM33 8 Small 3 Major 4 Low High 
DM34 8 Small 3 Minor 4 Low Med 
DM35 8 Small 1 Major 4 Low Low 
DM36 8 Small 4 Major 4 High Med 
DM37 9 Small 4 Major 4 Low Med 
DM38 9 Small 2 Major 4 None Med 
DM39 9 Small 4 Major 4 High Low 
DM40 9 Small 3 Major 8 High Low 
DM41 9 Small 1 Minor 8 None Med 
DM42 9 Small 1 Minor 8 High Low 
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2.11 Stressmarks 
Following the release of the Benchmark Suite, it became apparent that additional benchmarks would be required to 
assist in satisfaction of the needs of some program participants.  A set of smaller, more specific procedures was de-
sired.  These stressmarks would more directly illustrate particular elements of the DIS problem, and require less 
energy to implement, perhaps at the expense of reduced realism in certain areas.  This section gives pertinent points 
extracted from the stressmark specifications.20 

2.11.1 Purpose 

The development of new architectures and approaches for data-intensive computing could be beneficial to many 
problems of interest to DARPA.  Evaluation of the approaches in the context of those problems is essential in order 
to realize those benefits. 

Equally important, the existence of simplified—but meaningful—programs derived from defense applications can 
provide valuable input to the development process. 

On these premises the benchmarks were developed.  While the purpose of the Benchmark Suite included the need to 
realistically represent certain applications, this sometimes led to difficulty in their implementation.  Though the 
benchmarks represented the essence of the data-intensive processing stripped from the source application, they still 
required a significant amount of code in order to be complete.  The target for the benchmarks was about 1000 lines 
of code, derived from applications with hundreds of thousands or millions of lines.  The target for these stressmarks 
is on the order of dozens of lines. 

To reduce the code without eliminating the data-intensive nature of the problem required a focus on elementary 
segments of the problem.  This implies that results should be worse for general-purpose machines, and architectures 
developed for the “data-intensive” problem should show an even greater improvement.  These results, however, 
must necessarily be less indicative of normal machine operations, and should be interpreted accordingly. 

The benchmarks were aimed specifically toward focused code that retained the context of the enveloping applica-
tion.  This approach attempted to avoid the pitfalls associated with ‘kernel’-oriented benchmarks, which often indi-
cate performance figures that are unattainable in typical operation. 

Stressmarks are necessarily less realistic than benchmarks.  Benchmarks are necessarily less realistic than true appli-
cations.  Participants are cautioned not to allow concentration on stressmarks to interfere with development of ma-
chines and software that performs well on real applications. 

The critical point for the development of the stressmarks, therefore, is to support the benchmarks, rather than to re-
place them. 

2.11.2 Basic Requirements 

One of the major goals of the benchmark suite was to retain a certain degree of application-level orientation, since 
some elements of data-intensive problems cannot be reliably measured using isolated kernels.  The motivation be-
hind the stressmarks, therefore, is to supply problems that are derivative of those offered in the benchmarks, but in 
the form of isolated kernels.  Consequently, the original considerations for stressmarks were: 
• Operations should be nominally representative of the data-intensive kernels within the benchmarks. 
• Input and output should be limited, and only occur at the very beginning and end of processing tasks. 
• Total memory required should be varied, much as the “problem size” was varied for the benchmarks. 
• Acceptance and verification tests become difficult to specify, since I/O is limited. 

                                                           
20 Complete specifications can be found in DIS Stressmark Suite, 
http://www.aaec.com/projectweb/dis/DIS_Stressmarks_V1_0.pdf.  
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• A random number generator and initial seeds should be used to generate input. 
• Ideally, stressmarks can be run in a variety of modes corresponding to data types and precisions. 
• If possible, parallel (MPI or threaded) versions could be supplied. 
• Total size of source code should be extremely small. 
• Represent operations on sparse, dense, regular, and irregular data.  Attempt to allow parallelism coarse, fine, or 

both levels. 
• Metrics collected should be similar to those collected for the Benchmarks. 

2.11.3 Development 

Considering the above requirements, a series of stressmarks were proposed, and development began.  During this 
period, it was observed that the bulk of the operations did not modify their fields of data.  A new one was created to 
address this specifically, and others were modified to require memory writes, as well. 

It had been observed that the benchmark suite minimized the effects of data starvation by capitalizing on the work of 
clever programmers.  A goal during this development was to avoid the possibility of simple reinterpretation of the 
problem resulting in reduction of data starvation.  To our surprise, this was not an easy task.  Repeatedly, our soft-
ware engineers were able to find ways to change the program steps in such a way that the bulk of the intended prob-
lem was reorganized to be more memory-friendly.  While this may merely be the consequence of attempting to 
specify problems that only require a dozen lines of code to solve, it could indicate that the problem space is more 
limited than initially thought, when a supply of engineering labor is available.  In either case, several of the stress-
marks required modification due to this issue. 

2.11.4 Stressmark Suite 

The final suite included seven individual stressmarks, though their results were intended for collective interpretation.  
This table summarizes them; each is individually described in later sections. 

Stressmark Problem Memory Access 

Pointer Pointer following. Small blocks at unpredictable locations.  
Can be threaded. 

Update Pointer following with memory updates. Small blocks at unpredictable locations. 

Matrix Conjugate gradient simultaneous equa-
tion solver. 

Dependent on matrix representation.  
Likely to be irregular or mixed, with 
mixed levels of reuse. 

Neighborhood Calculate image texture measures by 
finding sum- and difference-histograms. 

Regular access to pairs of words at arbi-
trary distances. 

Field Collect statistics on large field of words. Regular, with little re-use. 

Corner-Turn Matrix transposition. Block movement between processing 
nodes with practically nil computation. 

Transitive 
Closure 

Find all-pairs-shortest-path solution for a 
directed graph. 

Dependent on matrix representation, but 
requires reads and writes to different 
matrices concurrently. 

2.11.5 Which stressmarks? 

The seven stressmarks are largely complimentary and should be considered as a set.  The true value of the stress-
marks is realized when their metrics are evaluated collectively.  Evaluation of metrics for any one stressmark inde-
pendently of the others must be performed with caution.  Participants were encouraged to run all of the stressmarks. 
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2.11.6 Code organization 

Most code examples supplied with the specifications demonstrated the function of both the data generation and the 
data processing segments of the process.  Typically, only the latter of these was deemed of interest, and often, the 
former may be executed on a separate host platform or on an offline basis.  Thus, participants were warned to be 
wary of which algorithmic actions were subject to metric collection, and which were not. 

2.11.7 Code optimization 

Any code found within the stressmark specifications is for purposes of example only.  There is no ‘baseline’ code.  
Hence, there is no restriction on code optimizations, nor is there a requirement that example code operate success-
fully without modification.  Participants were expected to generate the best implementations possible, using methods 
they deem appropriate. 

Generation of multiple implementations of stressmarks, each one optimizing a different performance characteristic, 
was encouraged.  For example, one might optimize for maximum throughput in one case, minimum memory storage 
in another, and minimum power consumption in a third.  When doing this, participants were reminded to collect 
results using as much of the supplied data sets as possible, considering each instance of each stressmark separately.  
The performance trade-offs of design decisions was to be visible in the results, as this is an important element for 
evaluation of the candidate DIS approach. 

As the stressmarks are minimalist, the likelihood that problem-domain expertise biased results is small.  To further 
minimize that possibility, participants were asked to share their algorithmic methods with other members of the DIS 
community.  The possibility that source code supplied by a participant may be distributed to other teams was adver-
tised. 

The intent of each stressmark should be clear from its description.  Participants were reminded to resist the tempta-
tion to optimize the results specifically for the given data sets, at the cost of performance on arbitrary sets.  To rein-
force this, we prepared ‘surprise’ test files, which would be delivered at the direction of the program manager, for 
the purpose of validation of results. 

2.11.8 Data Sets 

As with the Benchmark Suite, the primary control over problem size comes from the input data.  A wide range of 
problem sizes was specified by the supplied input data sets.  Participants were expected to measure performance of 
their implementations for each input file in the set, except when the memory requirements of the file exceed the ca-
pacity of the test system. 

Participants were invited to create additional input files at their discretion; the provided files are to be considered a 
minimal set.  They were also reminded that additional sets may be released from time-to-time during the program. 

Requirements of the data sets were effectively identical to those of the Benchmark Suite data sets. 

2.11.9 Submission of Results 

Participants were expected to supply essentially the same information about their tests as described for the Bench-
mark Suite. 
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2.12 Pointer Stressmark 
The Pointer Stressmark requires a system to repeatedly follow pointers (‘hop’) to randomized locations in memory.  
The memory access pattern is therefore defined by the need to collect small blocks of memory from unpredictable 
locations.  This pattern is commonly encountered in applications, however it is normally associated with a small 
number of consecutive accesses.  Still, it tests a capability orthogonal to the other stressmarks of this set. 

The Pointer Stressmark consists of fetching a small number of words at a given address or offset, finding the median 
of the values, and using the result and an additional offset to determine the address for the next fetch.  The process is 
repeated until a ‘magic number’ is found, or until a fixed number of fetches have been done.  The purpose of the 
median operation is to require the access of multiple words at each location, and the additional offset reduces the 
likelihood of self-referential loops. 

The entire process is performed multiple times for each test.  This allows the test to be performed in parallel.  The 
discussion here refers to ‘threads’ in this context, though there is no requirement that they be implemented using that 
method. 

The values to be fetched can be array indices, or they can be memory addresses computed during initialization, at 
the discretion of the user. 

2.12.1 Input 

Input consists of a single ASCII file containing all the parameters required for a single run.  The table below gives 
the format and description of each item. 

Item Number Description Format Limits 

1 Size of field of values, f, in words. %lu 24≤val≤224 

2 Size of sample window, w, in words. %h 20≤val<24, val 
modulo 2 = 1 

3 Maximum number of hops to be allowed for each start-
ing value. 

%lu 20≤val≤232-1 

4 Seed for random number generator. %ld 1-231≤val≤-1 

5 Number of threads, n. %d 20≤val≤28 

3i + 6, 0≤ i<n The starting index for the ith thread. %lu 0≤val<f 

3i + 7, 0≤ i<n The minimum ending index for the ith thread. %lu 0≤val<f 

3i + 8, 0≤ i<n The maximum ending index for the ith thread. %lu 0≤val<f 

2.12.2 Algorithm 

The general procedure for this stressmark is as follows: 

Step Action 

1 Read the input file. 

2 Initialize the random number generator and fill the field with random numbers of the 
range [0…f-w-1].  These values represent indices into the field.  If equivalent addresses 
are to be used, they may be computed now. 

3 Start the timer. 
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4 Perform these steps once for each thread: 
(a) Clear the hop count. 
(b) Set index to the starting index for this thread. 
(c) Fetch values at location given by index.  This value may be an address or an 

address offset.  Get values at index, index+1, index+2, … index+w-1. 
(d) Set index to the sum of the median of the values obtained in step 4(c) and the 

hop count, modulo (f-w). 
(e) Increment hop count by one.  If hop count equals the maximum number of 

hops allowed, store the hop count and exit this thread. 
(f) If index is greater than or equal to the minimum ending index for this thread, 

and index is less than the maximum ending index for this thread, store the hop 
count and exit this thread.  Otherwise, go to step 4(c). 

5 Stop the timer. 

6 Write the output and metrics files. 

2.12.3 Data Notes 

For Pointer, the size of the field is the primary variation between tests.  Some tests determine whether the size of the 
window affects operation (this relates both to spatial locality and the number of operation per hop).  The ending 
ranges needed to be set by trial-and-error, to ensure the proper number of hops.  Ending ranges needed to be situated 
such that a simple address-bit check would not be satisfactory for completion testing. 

Below is a table of the parameters set for Pointer tests. 

Filename F W Maxhops Seed N Thread Notes 
P1 2^10 1 Set such 

that it is 
used; not 
to exceed 
1M 

 16 Wildly 
various, 
but adding 
up to ~1M 
hops 

 

P2 2^12 1 Ditto  16 Ditto  
P3 2^14 1 Ditto  16 Ditto  
P4 2^16 1 Ditto  16 Ditto  
P5 2^18 1 Ditto  16 Ditto  
P6 2^20 1 Ditto  16 Ditto  
P7 2^22 1 Ditto  16 Ditto  
P8 2^24 1 Ditto  16 Ditto  
P9 2^20 1 Ditto  16 Add up to 

10M 
 

P10 2^22 1 Ditto  16 Ditto  
P11 2^24 1 Ditto  16 Ditto  
P12 2^20 1 Ditto  16 Add up to 

100M 
 

P13 2^22 1 Ditto  16 Ditto  
P14 2^24 1 Ditto  16 Ditto  
P15 2^20 3 Ditto  16 Same as 

P6 
Window 
test 

P16 2^20 5 Ditto  16 Same as 
P6 

Window 
test 

P17 2^20 7 Ditto  16 Same as 
P6 

Window 
test 
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P18 2^22 1 Ditto Same as 
P7 

8 Still add 
up to 1M 

Thread 
test 

P19 2^24 1 Ditto Same as 
P8 

4  Thread 
test 

P20 2^18 1 Ditto Same as 
P5 

2  Thread 
test 

P21 2^16 1 Ditto Same as 
P4 

1  Thread 
test 

 

2.12.4 Memory Trace 

Here is an example memory trace of this stressmark on a SuperScalar machine.  Note the absence of an organized, 
predictable pattern, and the lack of spatial locality. 
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2.13 Update Stressmark 
The Update Stressmark is extremely similar to the Pointer Stressmark.  It should be considered a companion stress-
mark, as their memory access patterns are nearly identical to one another.  The major difference is that, for this 
stressmark, elements in the memory field are updated at each access.  This consequently makes parallelism at the 
‘thread’ level impossible, because results become nondeterministic.  However, it should be noted that parallel im-
plementations could be made practical at a fine level. 

The Update Stressmark consists of: 
• fetching a small number of words at a given address or offset, 
• updating the word at the given address, 
• finding the median of the values, and 
• using the result to determine the address for the next fetch. 

The process is repeated until a ‘magic number’ is found, or until a fixed number of fetches have been done.  The 
purpose of the median operation is to require the access of multiple words at each location.  The update requires a 
memory write operation, and additionally reduces the likelihood of self-referential loops. 

The values to be fetched can be array indices, or they can be memory addresses computed during initialization, at 
the discretion of the user. 

2.13.1 Input 

Input consists of a single ASCII file containing all the parameters required for a single run.  The table below gives 
the format and description of each item. 

Item Number Description Format Limits 

1 Size of field of values, f, in words. %ld 24≤val≤224 

2 Size of sample window, w, in words. %h 20≤val<24, val 
modulo 2 = 1 

3 Maximum number of hops to be allowed. %ld 20≤val≤232-1 

4 Seed for random number generator. %ld 1-231≤val≤-1 

5 The starting index. %ld 0≤val<f 

6 The minimum ending index. %ld 0≤val<f 

7 The maximum ending index. %ld 0≤val<f 

2.13.2 Algorithm 

The general procedure for this stressmark is as follows: 

Step Action 

1 Read the input file. 

2 Initialize the random number generator and fill the field with random numbers of the 
range [0…f-w-1].  These values represent indices into the field.  If equivalent addresses 
are to be used, they may be computed now. 

3 Start the timer. 

4 Perform these steps: 
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(a) Clear the hop count. 
(b) Set index to the starting index. 
(c) Fetch values at location given by index.  This value may be an address or an 

address offset.  Get values at index, index+1, index+2, … index+w-1. 
(d) Set the value referenced by index to the sum of its previous value and the hop 

count, modulo (f-w).  E.g., x[I]=(x[I]+c)%(f-w); 
(e) Set index to the median of the values obtained in step 4(c). 
(f) Increment the hop count by one.  If the hop count equals the maximum number 

of hops allowed, store the hop count and proceed to step 5. 
(g) If index is greater than or equal to the minimum ending index, and index is less 

than the maximum ending index, store the hop count and proceed to step 5.  
Otherwise, go to step 4(c). 

5 Stop the timer. 

6 Write the output and metrics files. 

2.13.3 Data Notes 

The data requirements here are very much like those for Pointer.  Many of the tests were designed to mimic Pointer 
in key ways, so that the effects of the added write cycle and the lost parallelism could be observed. 

Filename F W Maxhops Seed Thread 
(1) 

Notes 

U1 2^10 1 1M    
U2 2^12 1 1M    
U3 2^14 1 1M    
U4 2^16 1 1M    
U5 2^18 1 1M    
U6 2^20 1 1M    
U7 2^22 1 1M    
U8 2^24 1 1M    
U9 2^26 1 1M    
U10 2^28 1 1M    
U11 2^22 3 1M Same as 

U7 
Same as 
U7 

Window 
test 

U12 2^22 5 1M Same as 
U7 

Same as 
U7 

Window 
test 

U13 2^22 7 1M Same as 
U7 

Same as 
U7 

Window 
test 
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2.13.4 Memory Trace 

Below is a sample memory trace from Update.  It has the same character as Pointer, except that there is a memory 
write coincident with each hop. 
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2.14 Matrix Stressmark 
The Matrix Stressmark characterizes operations dealing with data that is stored in a compact form, and accessed in 
mixed patterns.  In this stressmark, the iterative conjugate gradient method is used to solve a linear system repre-
sented by the equation A •x = b, where A is a sparse nxn matrix, and x and b are vectors with n elements each.  For 
simplicity of initial data generation, matrix A is positive-definite and symmetric. 

The stressmark requires solving the equation A •x = b for vector x.  As the required method is iterative, the steps are 
performed until x is found to be within a specified error tolerance, or for a specified maximum number of iterations, 
whichever occurs first.  A random number generator, supplied as part of the stressmark specification, is used to 
populate the matrix A and vector b initially.  In this way, the input required to specify the trials has been reduced to a 
small set of parameters, which are sufficient to define the linear system.  Output consists of a value dependent on the 
solution vector x. 

2.14.1 Input 

Input for the Matrix Stressmark is provided in a single ASCII file, as a list of parameters defining the linear system 
to be solved.  The table below describes each field. 

Item Number Description Format Limits 

1 A seed value for the random number generator. %ld 1-231 < val < -1 

2 The dimension, n, of matrix A and vectors x 
and b. 

%d 1 < val ≤ 215 

3 The number of nonzero elements to be inserted 
within matrix A. 

%d n < val ≤ n2 

4 The maximum number of iterations to be per-
formed.  The actual number of iterations re-
quired may be less if the calculated error is 
lower than the tolerance specified by the next 
field. 

%d 0 < val ≤ 216 

5 The tolerance of error for the solution vector. %e 1.0e-7 < val < 0.5 

2.14.2 Conjugate Gradient Method 

The Matrix Stressmark consists of the conjugate gradient iterative method for solving a linear system.21  Each input 
file specifies an nxn linear system represented by  

A • x = b  

Here, ‘•’ denotes matrix multiply.  The conjugate gradient algorithm is used to determine the vector x to within the 
specified error tolerance, or for the specified maximum number of iterations, if that occurs first. 

Define two vectors, rk and pk, for k =1,2,... (denoting the iteration count).  Choose  

r1 = b − A• x1  

and form the sequence of improved estimates  

                                                           
21  See Press, W. H., Teukolsky, S. A., Vetterling, W.T., and Flannery, B. P., Numerical Recipes in C, Second Edi-
tion, Cambridge University Press, 1992. 
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xk+1 = xk + αk pk  

to obtain our solution x.  For initial vectors r1, set p1=r1=b, and choose x1=(0…0).  For each subsequent iteration, use 
the following equations to update the vectors: 

αk =
rk

T • rk

pk
T • A • pk( )

 

rk +1 = rk −α k A• pk  

βk =
rk +1

T • rk +1

rk
T • rk

 

As long as the recurrence does not break down because one of the denominators is zero (which theoretically cannot 
happen for symmetric positive definite matrix A), the iteration will complete in n steps or less.  Perform the iteration 
steps outlined above until: 
• the maximum specified number of iterations have been performed, or 

pk +1 = rk +1 + βk pk  

• the error is within specified tolerance, which is defined as when the solution x satisfies the equation: 

A• x − b
b

≤ errorTolerance  
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2.15 Neighborhood Stressmark 
The Neighborhood Stressmark deals with data that is organized in multiple dimensions, and operated upon by 
neighborhood operators.  Memory access is therefore somewhat localized along one dimension, and spread substan-
tially along all others.  Occasionally, processing can be organized such that memory is accessed by multiple syn-
chronous threads with unit-strides. 

Image processing applications commonly include this type of operator.  Clever programmers will organize code to 
maximize order of address access, but this is not always practical. 

For this stressmark, the relationships of pairs of pixels within a randomly generated image are measured.  These 
features quantify the texture of the image, and require memory access to pairs of pixels with specific spatial relation-
ships. 

Imagery to be measured is constructed by populating a blank square image with a multitude of line segments, where 
the line endpoints, width, and brightness values are randomly generated.  The width and bit-depth of the image are 
input at run-time. 

The texture measurements are obtained by estimating a gray-level co-occurrence matrix (GLCM).22  The matrix 
contains information about the spatial relationships between pixels within an image.  Statistical descriptors of the co-
occurrence matrix have been used as a practical method for utilizing these spatial relationships.  The descriptors can 
be estimated by using sum- and difference-histograms.23 

Two statistical descriptors, GLCM entropy and GLCM energy, are calculated within the stressmark.  Each is calcu-
lated for multiple distances and directions, as defined in Section 2.15.2. 

2.15.1 Input 

Input consists of a single ASCII file containing all the parameters required for a single run.  The table below gives 
the format and description of each item.  From these parameters, an image is generated for consumption by the 
stressmark kernel. 

Item Number Description Format Limits 

1 A seed for the random number generator. %ld 1-231 < val < -1 

2 The bit-depth of the image.  Pixel values range 
from 0 to 2val-1. 

%d 7≤ val ≤15 

3 The dimension, dim, of the input image.  Im-
ages are always square, so dim is both the 
width and the height. 

%d 1 < val ≤ 215 

4 The number of line segments to be inserted 
into the image. 

%d 0 < val ≤ 216 

5 The minimum thickness, in pixels, of the line 
segments, minThickness. 

%d 0 < val < dim 

6 The maximum thickness, in pixels, of the line 
segments. 

%d minThickness ≤ val, 
val < dim 

                                                           
22 Parker, J., Algorithms For Image Processing And Computer Vision, Wiley Computer Publishing, 1997. 
23 Unser, M., “Sum and Difference Histograms for Texture Classification,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol. PAMI-8, 1:118-125, 1986. 
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7 The shorter of the distances between pixels to 
be measured. 

%d 0 < val < dim 

8 The longer of the distances between pixels to 
be measured. 

%d 0 < val < dim 

2.15.2 Algorithmic Specification 

The Neighborhood Stressmark entails estimation of two texture measurements obtained through the gray-level co-
occurrence matrix (GLCM).  These descriptors are GLCM entropy and GLCM energy.  Two input parameters–
distanceShort and distanceLong–define the spacing to use when calculating the descriptors, thus determining the 
scale of the textures being measured. 

GLCM entropy and GLCM energy can be found, without calculation of a gray-level co-occurrence matrix, by find-
ing a sum histogram, sumHist, and a difference histogram, diffHist.  Like the GLCM, these histograms are depend-
ent on a specific offset distance and direction.  The sum histogram is simply the normalized histogram of the sums 
of all pairs of pixels a given distance and direction from one another.  Likewise, the difference histogram is the nor-
malized histogram of the differences of all pairs of pixels a given distance and direction from one another.  For our 
purposes, each histogram requires one bin for each possible result, or 2bit depth + 1 bins. 

Based on the histograms, the GLCM descriptors are defined as: 

GLCM entropy =  -  sumHist(i)* log[sumHist(i)] 
i

∑
    -  diffHist(j) *log[diffHist(j)]

j
∑

GLCM energy =  sumHist(i)2

i
∑ * diffHist( j)2

j
∑

 

where sumHist(i) is the ith bin of the normalized sum histogram, and diffHist(j) is the jth bin of the normalized dif-
ference histogram for the distance and direction of interest. 

For this stressmark, the GLCM energy and GLCM entropy are found for each of four directions at two distances.  
The distances are given as the input parameters distanceShort and distanceLong.  The directions are constant for all 
tests: 0° (horizontal), 45° (right diagonal), 90° (vertical), and 135° (left diagonal).  Note that since images are typi-
cally thought of as growing rightward and downward from their origin, these directions represent angles swept 
clockwise.  Note also that with square pixels, these angles never result in quantization issues. 

2.15.3 Data Notes 

Certain considerations were kept while generating the test files: 

• Bit depth affects histogram size, and thus cache-miss likelihood.  Different bit depths with a matching ran-
dom number seed should get same histograms with different resolutions. 

• High spatial frequency images yield more random histograms, implying lower spatial locality.  Increasing 
max width raises chances that low-numbered bins will be used a lot. 

• Distance measures will not matter much to standard machines, because multiple lines will unit-stride along 
as partners.  However, novel schemes that utilize spatial locality should show better performance on 
smaller ranges. 
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• The lines themselves vary slowly, which would hit certain areas of histograms a lot when the lines are wide 
or the colors change very slowly.  When the lines are short, narrow, and vary a lot, there will be less local-
ity of histogram bins. 

2.15.4 Sample Memory Trace 

The sample memory trace shows the highly localized read for the image kernel, and the histogram writes. 
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2.16 Field Stressmark 
The Field Stressmark emphasizes regular access to large quantities of data.  It involves scanning for strings, possibly 
with fine-grain parallelism.  In this way, it tests a system’s ability to perform on searches when indices are unavail-
able or inadequate. 

The Field Stressmark consists of searching an array (field) of random words for token strings, which are used as 
delimiters.  All words between instances of the delimiter form a sample set, from which simple statistics are col-
lected.  The delimiters themselves are updated in memory.  When all instances of a token are found, the process is 
repeated with a new one.  The statistics for each sample set are reported. 

2.16.1 Input 

The table below gives the format and description of each input item. 

Item Number Description Format Limits 

1 Size of field, f, in words. %ld 24≤val≤224 

2 Seed for random number generator. %ld 1-231≤val≤-1 

3 Offset value for token modifier, mod_offset.  This 
value is the number of words between a found token 
word and the word that should be used to modify it.  
See Section 2.17.2 for more information. 

%ld 20≤val≤216 

4 Number of tokens, n. %ld 20≤val≤28 

5 + i, 0≤ i<n The ith token, given as a zero-terminated string of 
hexadecimal values. 

%x 
[…%x] 0 

Each element of 
string: 0≤val<28 

Length of string: 
1≤val<23 

2.16.2 Algorithm 

The general procedure for this stressmark is as follows: 

Step Action 

1 Read the input file. 

2 Initialize the random number generator and fill the field with random integers of the 
range [0…28-1]. 

3 Start the timer. 

4 Get the next token from the input list. 

5 Search through the field, looking for an instance of the token.  Note that the first sub-
field ends at the first instance of the token. 

At the beginning of the field: 
(a) Set the count of the number of subfields to one. 
(b) Initialize the count and sum accumulators to zero.  Initialize the minimum ac-

cumulator to a value greater than or equal to 28-1. 

At each token instance: 
(c) Store the values from the count, sum, and minimum accumulators for subse-
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quent output. 
(d) Modify the delimiter in the field by adding the value of one new word to each 

word in the string, discarding the overflow of each word.  The words to be 
added are located by finding the sum of the token modifier offset and the index 
of the delimiter words, using modulo arithmetic.  I.e., F[x]+=F[(x+y)%f].  
Thus, each time an instance of the token is found and used as a delimeter, it is 
modified by summing with another string within the field. 

(e) Increment the count of the number of subfields by one. 
(f) Initialize the count, and sum accumulators to zero.  Initialize the minimum ac-

cumulator to a value greater than or equal to 28-1. 
(g) Proceed with the search, beginning at the next word that is not part of the de-

limiter. 

For each word encountered that is not a part of a token instance: 
(h) Increment the count accumulator by one. 
(i) Increment the sum accumulator by the value of the current word, discarding the 

overflow. 
(j) If the value of the current word is less than that of the minimum accumulator, 

set the value of the minimum accumulator to that of the current word. 

At the end of the field: 
(k) Store the values from the count, sum, and minimum accumulators for subse-

quent output. 
(l) Proceed to step 6. 

6 Repeat steps 4 and 5 until the input list of tokens is exhausted (total of n times). 

7 Stop the timer. 

8 Write the output and metrics files. 

2.16.3 Tests 

Here are some notes about the test parameters: 

• Some offsets should be large, in order to prevent single-pass schemes. 

• Size of field is determinant primarily in keying whether a pass will stay in cache or not.  Prefetching may 
take care of everything. 

• Length of token list suggests efficiency.  A long list and a short list processed in similar time implies effi-
ciency for multiple runs. 

• Ensure no more than 256 instances of delimiters. 

• Ensure that modified words always contribute to result. 

• The length of string determines how frequently they will be encountered.  It also affects how much process-
ing has to be done for a match. 

Filename F Seed Mod_offset N Tokens Comments 
F1 2^14 rnd rnd 64 rnd Adjust to-

kens so that 
total number 
of hits (all n 
tokens) is 
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constant 
(and high 
but each 
<256). 

F2 2^16 “ “ 32 “ “ 
F3 2^18 “ “ 16 “ “ 
F4 2^20 “ “ 8 “ “ 
F5 2^22 “ “ 8 “ “ 
F6 2^24 “ “ 4 “ “ 
F7 2^20 Same as F5 Same as F5 32 “ Efficiency 

test 
F8 2^22 Same as F6 Same as F6 Same as F6 Same size as 

F6, but hit 
many fewer 
times 

Token hit 
test 

 

2.16.4 Sample Memory Trace 

The Field stressmark has a regular, unit-stride access pattern, as can be seen from the memory trace below. 
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2.17 Corner-Turn Stressmark 
The Corner-Turn Stressmark emphasizes effective memory bandwidth without stressing functional units.  It in-
volves the matrix transposition  (“corner-turn”) operation useful in signal processing applications.  Although matrix 
transposition is a required element in other stressmarks and benchmarks within this suite, this stressmark involves 
practically no computation, so memory bandwidth issues are not readily masked behind processing latency. 

The Corner-Turn Stressmark consists of transposing a matrix of random words repeatedly.  As there is no specific 
computation, there is no required output. 

If the candidate architecture employs multiple computation nodes, the stressmark should be executed using a variety 
of combinations of these nodes, so the relationships between configuration, problem size, and performance may be 
studied. 

The Corner-Turn Stressmark has both in-place and out-of-place modes, referring to whether the transposed matrix 
must overwrite the original, or exist as a copy (on different computational nodes if multiple nodes are utilized). 

2.17.1 Input 

The table below gives the format and description of each item. 

Item Number Description Format Limits 

1 Row dimension, x, of matrix, in words. %ld 24≤val≤215 

2 Column dimension, y, of matrix, in words. %ld 24≤val≤215 

3 Seed for random number generator. %ld 1-231≤val≤-1 

4 Number of times to transpose matrix, n. %ld 20≤val≤216 

5 Flag indicating operating mode.  0=in-place; 1=out-of-
place. 

%h 0≤val≤1 

2.17.2 Algorithm 

The general procedure for this stressmark is as follows: 

Step Action 

1 Read the input file. 

2 Create a matrix of y rows and x columns, stored in row-major order and evenly distrib-
uted across computation nodes.  Each element of the matrix should consist of at least 
one word large enough to contain integer values of the range [0…232-1]. 

3 Initialize the random number generator and fill the matrix in row-major order with ran-
dom integers of the range [0…232-1]. 

4 If in out-of-place mode, create a second matrix of x rows and y columns, to be used as a 
destination matrix. 

5 Start the timer. 

6 Transpose the input matrix completely. 

7 Stop the timer and store results. 

8 Repeat steps 5-7 until the matrix has been transposed n times. 

9 Write the metrics file.  At a minimum, best, worst, and average cases must be reported.  
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A histogram of all results is recommended. 

2.17.3 Test Files 

The following parameters were defined in the provided test files. 

Filename X Y Seed N Flag Comments 
CT1 128 128  1000 0  
CT2 128 128  1000 1  
CT3 1024 1024  50 0  
CT4 1024 1024  50 1  
CT5 1024 8192  10 0  
CT6 8192 1024  10 0  
CT7 800 20000  4 0 GPS 
CT8 800 20000  4 1 GPS 
CT9 12000 12000  2 1 Should be 

simple frac-
tion of ct9 

CT10 16000 16000  2 0  
CT11 16000 16000  2 1  
CT12 32000 16000  1 0  
CT13 8000 32000  1 0  

2.18 Transitive Closure Stressmark 
The Transitive Closure Stressmark emphasizes semi-regular access to elements in multiple matrices concurrently.  It 
requires solution of the all-pairs shortest path problem, which is fundamental to a variety of computational prob-
lems. 

The Transitive Closure Stressmark utilizes the Floyd-Warshall all-pairs shortest path algorithm24.  It accepts an ad-
jacency matrix of a directed graph as input, and uses a recurrent relationship to produce the adjacency matrix of the 
shortest-path transitive closure.  It runs in O(n3) time, which asymptotically is no better than n calls to Dijkstra’s 
single-source shortest-paths algorithm.25  However, this approach is generally considered to operate better in prac-
tice than Dijkstra’s, especially when adjacency matrices (as opposed to lists) are employed. 

2.18.1 Input 

The table below gives the format and description of each item of the input file. 

Item Number Description Format Limits 

1 Number of vertices, n, in words. %ld 23≤val≤214 

2 Number of edges, m, in words. %ld 0≤val≤n2 

3 Seed for random number generator. %ld 1-231≤val≤-1 

                                                           
24 Thomas Cormen, Charles Leiserson, and Ronald Rivest, Introduction to Algorithms, McGraw Hill, 1990. 
25 Ibid. 
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2.18.2 Algorithm 

The general procedure for this stressmark is as follows: 

Step Action 

1 Read the input file. 

2 Create an nxn adjacency matrix, D.  Each element must be able to represent discrete 
values of the range [0…231-1].  Initialize all matrix elements to 231-1. 

3 Initialize the random number generator.  Generate m random integer triples {xi, yi, zi}, 
where xi and yi are in the range [1…n], and zI is in the range [0…28-1].  Use the triples 
to initialize the adjacency matrix D of the directed graph, by using each xI as a starting 
vertex, each yI as an ending vertex, and each zi as the length of the edge.  (I.e., Dx,y=z.) 

4 Start the timer. 

5 For each k=[1…n], let Dk
i,j=min(Dk-1

i,j, Dk-1
i,k+Dk-1

k,j) ∀ i, j∈[1…n]. 

Note:  This step requires additional temporary storage for D; if desired, storage space 
may be allocated and initialized to contain the value 231-1 during step 2. 

6 Stop the timer. 

7 Calculate the sum of each row and column of Dn, ignoring any matrix elements contain-
ing the value 231-1. 

8 Write the output and metrics files. 

2.18.3 Test Files 

The following are the major parameters of the provided test files. 

File Name N M 
TC1 16 50% 
TC2 64 25% 
TC3 64 50% 
TC4 256 25% 
TC5 256 75% 
TC6 512 25% 
TC7 512 50% 
TC8 512 75% 
TC9 1024 20% 
TC10 1024 40% 
TC11 1024 60% 
TC12 1024 80% 
TC13 2048 10% 
TC14 2048 25% 
TC15 2048 50% 
TC16 2048 75% 
TC17 2048 90% 
TC18 4096 10% 
TC19 4096 50% 
TC20 4096 90% 
TC21 8192 1% 
TC22 8192 10% 
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2.18.4 Sample Memory Trace 

The sample memory trace below illustrates the regular, mixed-use nature of the stressmark. 

 

2.19 GUPS 
Though not strictly a part of the DIS suite, what came to be known as the GUPS (Global Updates Per Second) 
benchmark became a useful element in many of the DIS discussions and analyses.  In its simplest form, it can be 
described with this line of C code: 
while (1) ++rand(); 

This benchmark stresses random access to large banks of memory, and frequently runs at far below peak processing 
rates due to limits of memory bandwidth, address generation, and bank conflicts. 
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3 DIVA 
The University of Southern California Information Sciences Institute’s Data-IntensiVe Architecture (DIVA) pro-
ject26 designed and developed a new class of multiprocessor processor-in-memory (PIM) integrated circuits specifi-
cally devised to serve as smart memory to augment conventional systems.  The team submitted results based on 
simulations for Corner Turn, Pointer, Transitive Closure, and Neighborhood stressmarks.  Several configurations 
were simulated, representing systems of up to 64 PIMs. 

3.1 Description 
The DIVA team utilized a PIM-based approach to the DIS problem.  The team has designed and developed a new 
class of multiprocessor processor-in-memory (PIM) integrated circuits specifically devised to serve as smart mem-
ory to augment conventional systems.  Increased bandwidth is achieved both by integrating processing logic into 
memory chips, and providing “wide-word” instruction-level parallelism.  On-chip latencies are very low, and some 
parallelism is available due to multiplicity of processors within each PIM chip, and multiplicity of PIMs within a 
system. 

The DIVA system as configured for these experiments is comprised of between zero and 64 multiprocessor PIM 
chips serving as smart-memory coprocessors to an external host processor.  The PIM chips are capable of perform-
ing normal memory operations without a performance penalty.  Additionally, DIVA permits dynamic interaction 
between host and PIMs by a command protocol over a conventional memory bus allowing multiple host commands 
to be serviced across the PIM array and within any single PIM at one time.  Finally, messages may be passed be-
tween PIMs without host processor intervention. 

The team generated a suite of software to support the system, enabling execution of methods within the memory 
subsystem, and managing problem partitioning and communication.  Since the PIMs can emulate standard memory, 
legacy code is executable, though no performance enhancement is available in that mode.  To take full advantage of 
the DIVA system, code and data must be partitioned among the PIMs.  A large portion of the DIVA effort was de-
voted to creation of tools to assist this process.  Since most of the partitioning work for the benchmark effort was 
done prior to the completion of the software suite, it is unknown what level of effort would be required to gain per-
formance with the suite fully in place. 

Though not used for benchmarking purposes27, a 9.8mm-by-9.8mm prototype PIM chip containing 55 million tran-
sistors was fabricated in TSMC’s 0.18 micron technology through MOSIS. 

The DIVA project summaries claim 100x improvement in effective memory bandwidth for a system comprising 
128MB of PIM coprocessors, yielding an anticipated 10-100x improvement for certain applications. 

                                                           
26 http://www.isi.edu/asd/project.html 
27 A test was run using the Corner-Turn stressmark for verification purposes.  The experiment is discussed later in 
this section. 
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3.2 Measurements 
The DIVA team provided for results four stressmarks: Corner-Turn, Pointer, Transitive Closure, and Neighborhood.  
For each stressmark, multiple configurations were tested, with the number of active PIMs in each configuration 
varying from zero to 64.  Generally, only the small test problems were applied. 

All results were simulated.  (One stressmark was used during hardware validation; results of that experiment are 
provided in section 5.8, below.)  Simulations were performed using a special-purpose, system-level simulator called 
DSIM.  From the DIVA report28: 

DSIM uses RSIM29 as a framework, with significant extensions.  RSIM is an event-driven simula-
tor that models shared-memory multiprocessors built with state-of-the-art multiple issue, out-of-
order superscalar processors.  DSIM extensions include a simpler PIM processor with a Wide-
Word unit, the DIVA memory system, the parcel communication mechanism and the PIM-to-PIM 
interconnect.  DSIM supports the full DIVA PIM ISA. 

The DSIM host processor is taken directly from RSIM, as well as the host first and second-level 
caches.  The host processor architecture is based on the MIPS R10000, which is configured as a 
four-issue processor with two integer arithmetic units, two floating-point units and one address 
unit.  Loads are non-blocking.  It has a 32Kbyte L1 and a 1Mbyte L2 cache, both two-way asso-
ciative, with access times of 1 and 10 cycles, respectively.  Both L1 and L2 caches are pipelined 
and support multiple outstanding requests to separate cache lines. 

The host is connected to the DIVA memory system via a split-transaction, 64-bit bus. The memory 
system consists of the aggregation of all PIM memories, where each local memory is visible from 
both host and local PIM processor.  DSIM maintains the current open row of each memory bank 
to determine the memory access type (page or random mode) and simulates arbitration between 
host and PIM accesses.  The memory latencies seen by the host are 52 cycles for page-mode ac-
cesses and 60 cycles for random mode, and include the bus transfer delay, the memory arbitration 
time and the DRAM access time (4 and 12 cycles for page and random mode, respectively).  The 
memory latencies seen by the local PIM processor, including arbitration and DRAM access times, 
are 6 and 14 cycles for page and random mode accesses, respectively. 

An application library supports a cache-line-flush function to enforce coherence between the host 
caches and PIM memory, as well as synchronization and communication functions. These func-
tions are linked with the application code, and their execution is simulated by DSIM in the same 
way as the application code. 

DSIM also models the parcel mechanism and the PIM-to-PIM interconnect in detail.  Applications 
executing on DSIM have direct access to the parcel buffers via parcel handling functions that per-
form the writing/reading to/from the memory-mapped parcel buffers. These parcel handling func-
tions are part of DSIM's application library, and support the full set of parcel buffer status reads, 
triggering/non-triggering writes to the send parcel buffers and destructive/non-destructive reads 
from the receive parcel buffers.  These functions are linked with the application code, and their 
execution is simulated by DSIM as part of the application. 

Finally, we make the conservative assumption that the PIM processor runs at half the speed of the 
host processor.  Although the inherent speed of the logic is no slower, we make this assumption 
because the WideWord register accesses could impact the clock speed. 

                                                           
28 DIVA Report on DIS Stressmarks, September 2, 2002. 
29 http://rsim.cs.uiuc.edu/rsim 
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3.3 Pointer 
The DIVA implementation of the Pointer Stressmark involved partitioning PIM nodes into groups, each group large 
enough to keep one copy of the field array.  Threads are distributed among the PIMS, and executed simultaneously.  
“Hops” are computed locally when possible; otherwise, the thread is transmitted to the PIM within the group that 
holds the next address.  The host processor monitors the execution of threads, and signals the PIMS when all threads 
have terminated. 

This implementation allows for excellent thread parallelization, and execution time should be determined by the 
longest thread, as long as the field is distributed somewhat evenly. 

The results are shown in the graph below. 

 
Significantly, the address ranges shown are small—less than 108 words.  The DIVA team ran test files p01 and p05 
(shown in the graph above with indices 4 and 7, respectively) when testing multiple-PIM configurations.  The p20 
test was also run with the 1-PIM configuration, but that test had the same memory field as the p05 test.  No tests 
larger than 106 words were done with PIM configurations. 

The graph shows that the PIM versions are actually slower than the host-only version.  The DIVA team explained 
the result as follows. 

In our experiments, the HOST version performs better than the 1-PIM version when the input size 
fits in the host L1 or L2 caches (as in p05.in and p20.in).  The PIM version performs better than 
the host version when the input data set fits in one PIM node and does not fit in the host cache 
(such data is not reported since none of the DIS input sizes satisfies this condition).  Our PIM ver-
sion of Pointer does not speedup when the array must be partitioned among PIMs.  The main rea-
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son our Pointer does not scale well is that the rate of communication per hops is very small, and 
the local computation (an average of a couple of hops) is not enough to amortize the cost of PIM-
to-PIM communication. 

The DIVA team observes that PIM versions performance exceed the host-only version’s when the field size fits in 
one PIM node but not fit in the host’s cache.  However, the 1MB size of the PIM’s SRAM suggests that this would 
never be the case with the current floor-plan. 

The two tests with the 106-word address ranges show markedly different processing rates due to the coarse-level 
parallelism of the tests.  The host-only configuration achieves a rate for the 16-thread test that is 2.2 times that of the 
2-thread test, while the 1-PIM version nets only a 1.9 gain over its 2-thread rate. 

Due to the inter-PIM communication rate, this approach does not achieve a positive performance gain with respect 
to this stressmark.  Though some performance gain is to be expected due to coarse parallelism, none is in evidence. 

3.4 Update 
The Update Stressmark was not implemented by the DIVA team.  An implementation similar to that of the Pointer 
Stressmark—even if it had shown positive performance gain—would probably not yield performance gains because: 
(a) there are no gains available from coarse parallelization; and 
(b) the updates to the memory field would have to be synchronized somehow across PIM groups. 

3.5 Corner-Turn 
The DIVA team supplied the following information regarding its implementation for the Corner-Turn Stressmark: 

Our Cornerturn implementation performs a hierarchical matrix transpose, where the matrix is par-
titioned into blocks and each block is assigned to a PIM node. The transpose of each block is 
computed by partitioning the block into subblocks, which are transposed in WideWord registers 
using permutation operations. 

The host performs the initial block partitioning (see file partition.c), keeping a table with the as-
signment of blocks to PIMs, and coordinates synchronization between host and PIMs. In the first 
phase of the computation, each PIM computes the transpose of its local block. After that each pair 
of PIMs owning blocks that need to be swapped to form the transposed matrix communicate using 
the PIM-to-PIM network. 

The local block transpose is performed as a set of transposes of 8x8 sub-blocks (except for block 
sizes that are not multiple of the number of matrix elements that fit in a WideWord register). For 
the out-of-place transpose, each 8x8 subblock is loaded into the WideWord register file (an 8x8 
matrix with 32-bit elements requiring 8 WideWord registers), and transposed via a sequence of 
permutation operations. The transposed subblock is then stored back in memory at the target loca-
tion. In the in-place transpose (of square blocks) two subblocks of size 8x8 are loaded in Wide-
Word registers, each subblock is transposed in registers, and then the transposed subblocks are 
stored back in memory, swapping locations to form the transposed block.  This implementation 
takes advantage of the large capacity of the WideWord register file, avoiding loads and stores to 
memory during the transpose of each 8x8 subblock. 

After computing its local transposed block, each PIM exchanges its transposed block with the PIM 
that owns the location of the block in the transposed matrix. For example, for a square matrix di-
vided into 4 blocks where block-00 is assigned to PIM-0, block-01 to PIM-1, block-10 to PIM-2 
and block-11 to PIM-3, PIM-1 exchanges its transposed block with PIM-2.  PIMs-0 and PIM-3 
keep their transposed blocks since they should remain in the same location in the transposed ma-
trix. 
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The communication phase is performed in 2 steps: in the first step PIMs owning blocks in the up-
per triangular submatrix send their blocks to PIMs owning blocks in the lower triangular subma-
trix; the second step completes the exchange of blocks with PIMs in the lower triangular 
submatrix sending blocks to PIMs in the upper triangular submatrix. 

Finally, this version of Cornerturn avoids contention on the PIM-to-PIM network by assigning 
each pair of blocks that will exchange locations in the transposed matrix to neighbor PIMs. This 
assignment is based on the fact that communication occurs between fixed pairs of PIMs, and that 
when assigning a block to a PIM it is possible to determine the location of its transposed block in 
the transposed matrix, and then assign the block corresponding to this location to the nearest PIM 
available. 

This graph shows the DIVA results for the Corner-Turn Stressmark.  Results have been segregated by test type; the 
left side shows in-place operation, and the right side shows out-of-place.  Both sides give processing rate versus ad-
dress range. 

 
The graphs show a substantial increase in processing rate corresponding to increasing numbers of PIMs. 

Regarding the host-only versus the 1-PIM implementation, the DIVA team had this to report:  

Our HOST version of Corner Turn shows high memory stall times for input sizes that don't fit in 
the host L2 cache. This application has very little temporal reuse, since each matrix element is ac-
cessed a few times only during each matrix transpose. Thus primarily spatial reuse is exploited in 
cache, and each new cache line is only reused a few times. In the PIM version, the WideWord 
datapaths also exploit the available spatial reuse. 
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Furthermore, the WideWord loads/stores and operations on eight matrix elements at a time also 
reduce the number of accesses to memory. Finally, the latency seen by the PIM processor is lower 
than that suffered by the host for large input sizes. For example, for input ct03.in (1024x1024 ma-
trix transpose, out of place), the matrix size is four times larger than the host L2 cache, resulting in 
memory stalls of 98% of the host execution time. The 1-PIM version spends 40% of the execution 
time stalled for memory, due to the lower on-chip latencies and a reduction on the number of 
memory accesses (the average latency seen by the PIM is 11.6 cycles, since most of the accesses 
are in random mode). 

The data suggest that in-place corner-turning benefits from the local bandwidth more than out-of-place, as would be 
expected. 

Increasing the number of PIMs continues to net performance gain, but at reduced efficiency.  The mean rate gains 
per processor over the host-only version are as follows: 

1 PIM 3.9296 

4 PIM 0.8106 

16 PIM 0.8094 

64 PIM 0.7859 
(extrapolated) 

Significantly, the address ranges tested are less than 107 words.  The DIVA team did not run test files ct07 through 
ct13.  It is expected that host-only performance would continue to degrade as problem size increased.  Because the 
PIM versions show no such degradation,30 the improvement over the host-only configuration for larger problem 
sizes cannot be extrapolated. 

3.6 Transitive Closure 
The DIVA team’s implementation of the Transitive Closure Stressmark was described as follows:  

The DIVA version of Transitive Closure is based on the DIS sample code, and uses a dense matrix 
to represent the distance graph. It exploits both fine-grain parallelism, by performing WideWord 
arithmetic operations on eight 32-bit elements of the matrix in parallel, and coarse-grain parallel-
ism, by partitioning the data and computation among PIM nodes. 

The host processor computes the matrix partition and coordinates synchronization. Matrices din 
and dout are partitioned by rows and a set of consecutive rows is assigned to each PIM node. For 
the main loop nest of Transitive Closure, for each iteration of the outer loop k, each PIM node per-
forms the inner-loop computation (loops i and j) on its local set of rows, using a copy of row k 
previously sent by the PIM that owns row k. Therefore, for each iteration of loop k, the PIM node 
that owns row k sends a copy of this row to all other PIMs. All PIM nodes synchronize on each it-
eration of loop k, after the communication phase. 

The multicast of a matrix row from one PIM to all other PIMs is performed using the multicast 
mode supported by the DIVA parcel buffer mechanism. The sender processor writes a parcel pay-
load to the parcel buffer, and then writes a parcel header for each destination PIM. The write to the 
parcel header triggers the sending of the parcel to the specified destination.  This multicast mode 
allows the sender processor to write the parcel payload only once, reducing the cost of assembling 
parcels in the parcel buffer. 

The local computation on each PIM node takes advantage of the Wide-Word unit in the computa-
tion of the minimum value of each pair of elements from two matrix rows. Selective execution us-

                                                           
30 One exception is the 1-PIM, in-place series. 
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ing a WideWord operation (wmrgcc) merges the contents of two WideWord registers according to 
condition-code bits, allowing an eÆcient computation of the minimum value of each pair of ele-
ments of two WideWord operands. 

Finally, for both the HOST and PIM versions, the inner loops (loops i and j) of the main loop nest 
were interchanged, so that the HOST can benefit from spatial locality at the caches, and PIMs can 
exploit spatial reuse in WideWord registers. 

The times found by simulation of this stressmark are shown in the graph below. 

 

 

 
Note that the tests executed on DIVA were small; the largest required 0.5 Mword.  Increased performance gains for 
larger tests may be expected, but were not demonstrated. 
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Conversion of the times to processing rates, and graphing against address range and edge density results in the fol-
lowing graphs. 

 
The host-only version displays a relatively constant processing rate, independent of address range or edge density.  
The latter is to be expected; the former, however, illustrates that the tests used by the DIVA team were small, and 
therefore may not be indicative of typical performance. 

The processing rates of the PIM configurations all show some dependence on both address range (dependent on the 
number of nodes) and the number of edges.  Since the rates are shown to be rising with increased values of each of 
those parameters, the true potential of the system is likely not indicated. 

The team provided additional information: 

Our PIM version benefits from both fine- and coarse-grain parallelism, and from the higher band-
widths available at the PIMs.  For example, the HOST version for input tc05.in spends 65.2% of 
its execution time stalled due to cache misses, with 11.3% of the misses satisfied at the L1 and 
58.4% satisfied at the L2, resulting in an average memory latency of 6.7 cycles.  The 1-PIM ver-
sion shows a higher average memory latency (9.5 cycles), but it issues less memory accesses, 
since the WideWord unit is used to transfer data to/from memory and perform the computation. 
Therefore the 1-PIM memory stall time is smaller than that of the HOST version. The use of the 
WideWord unit also results in the added benefit of exploiting spatial reuse, since the matrix is ac-
cessed with stride one in the row dimension. 
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3.7 Neighborhood 
The DIVA team also experimented with the Neighborhood Stressmark.  Regarding the implementation, the team 
wrote: 

The Neighborhood implementation on DIVA exploits coarse-grain parallelism by partitioning the 
computation among PIM nodes. Each PIM computes a partial histogram locally, and at the end of 
the computation phase, the PIM nodes perform a parallel reduction to compute the final histogram.  
The parallel reduction takes n-1 steps, where n is the number of PIM nodes.  The communication 
is scheduled to take advantage of the PIM-to-PIM interconnection topology (bidirectional ring), 
avoiding congestion in the network. 

The following graph shows the processing times (in cycles) extracted from the supplied results. 

 
 

The data show performance gains for PIM versions, except that performance is lost for the 1-PIM version against the 
host-only version for most tests.  The DIVA team suggests this occurs whenever the image fits in the host’s L2 
cache, because the memory latencies seen by the PIM are larger than the L2 access time.  However, the coarse-grain 
parallelism available by partitioning the problem across PIM nodes gives considerable performance gains. 

The tests executed on DIVA were small; most of the images contained 1M pixels or less.  The largest test performed 
was with a 4M-pixel image. 
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The following graph shows the processing rates for these experiments, organized by bit depth (which determines the 
size of the histogram) and graphed against address range (dominated by image size). 

 
In all cases, the processing rate appears to grow with problem size.  This suggests that performance efficiency had 
not yet peaked for either the host or the PIM configurations for the evaluated problem sizes.  In other words, the 
overhead (for example, compulsory cache misses and communication delays during sub-histogram combination) is 
not amortized well due to the small number of pixels processed. 

The graph shows an inverse correlation between processing rate and bit depth.  In fact, the performance difference 
between bit-depths is greater than that between shown address ranges.  While it is possible that this could be an indi-
cation that the DIVA system is not especially suited for histogram updates, a more likely explanation is that the 
smaller bit depth of the pixels allowed the DIVA team to exploit fine-grain parallelism.  More pixels can be proc-
essed simultaneously due to the smaller dynamic range and resulting smaller required storage word. 

3.8 Hardware Experiment 
One benchmark-related experiment was performed with the first prototype chip, primarily to verify certain opera-
tions.  The parameters of the experiment differed significantly from those that were simulated, but some information 
is valuable.  The DIVA team provided the following information: 

Here is a description of the hardware experiment with cornerturn. This experiment was conduct to: (1) test some 
of the functionality of the PIM WideWord unit (permutations, conditional execution), and (2) demonstrate the 
potential for performance improvements for a benchmark with little data reuse (temporal reuse) and large band-
width requirements. Therefore so far we have only one point (matrix size, type of transpose (out of place)), and 
have not conducted an extensive evaluation by varying the matrix shape and size and other parameters. 
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Hardware We have a host system that consists of a PowerPC 603 + memory controller, a system bus, and 
2 PIM chips plugged in as DRAMs. Our  experiments so far do not include PIM-to-PIM com-
munication, since we are currently in the process of testing the parcel buffers and PIM route 
components (PiRCs). 

Hardware Pa-
rameters 

• PPC603 (HOST) running at 166MHz 
• Host cache size: 16 KBytes (4K 32-bit matrix elements) 
• Host cache line size: 32 bytes  (8 matrix elements) 
• Host cache associativity: 4 way 
• System bus running at 66MHz 
• PIM processor running at 133MHz 

Experiment Out-of-place transpose of a 64-by-128 matrix (total size = 32Kbytes). This size was chosen so 
that the working set (input and output matrices) does not fit in the host cache but is smaller 
than the PIM node memory. 

Host version The host version was written in C, but optimized by hand so that the code generated by the 
compiler is efficient (we checked the assembly code to make sure that is true).  Of course the 
host version would be more efficient if written in assembly, but we did not do it because of 
time/resources constraints. 

PIM version The PIM version was written in assembly, using the same algorithm for the 8-by-8 transpose 
in WideWord registers as described in the Stressmarks report.  The loops enclosing the 8-by-8 
transposes were also written in assembly. 

Measurements We perform the transposes simultaneously on both host and PIM, and for each 1000 trans-
poses on the host, we measure the number of transposes executed on the PIM (we chose an 
interval of 1000 host transposes to amortize the overhead introduced by the measurements on 
the hardware). 

Results For every 1000 host iterations we observe 35151 (with a 0.5% variation) iterations of the 
transpose on the PIM (35X speedup!!). 

Comparison 
with simulation 
results: 

The system we model in the simulator is different than the host system  used in the hardware 
experiments. In the simulator the host runs twice as fast as the PIM processors and it has a 
2KByte L1 and a 1MByte L2 caches. Also, the simulator models a MIPS R1000 host and our 
hardware platform is based on the PPC603. 

The cornerturn program executed on the simulator is more complex than the 1-PIM, assembly-
only, fixed-matrix-size version running on the hardware. 

The matrix size used in the hardware experiment was chosen such that the data does not fit in 
the host cache but fits in PIM memory.  Since our hardware platform has a very small cache, 
this problem size is not adequate for a similar experiment in the simulator.  One possibility 
would be to configure the cache parameters of the simulator and run the same problem size on 
the simulator, but I don't believe this would be a meaningful comparison due to the different 
platforms (R10000 x PPC603). 

The two items above make a direct comparison between the hardware and simulation results 
very difficult. Therefore, to "validate" our hardware results we estimated (analytically) the 
running times on the hardware, to check whether the observed speedups are near what we 
should expect. We parameterized our analytical model with values measured on the hardware, 
as for example, memory latencies, and our estimates are in the "ballpark" of the measured 
speedups. 
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3.9 Programming 
As can be seen from the descriptions of the stressmark implementations, some software engineering was applied to 
achieve the results presented.  The Diva project, though, included a comprehensive compiler development effort, 
which could eventually automate the problem-mapping process.  It is unclear from the tests how much of the per-
formance can currently be achieved through automated means, though no loss would be expected in any case, due to 
the PIM’s ability to emulate RAM. 

3.10 Remarks 
It must be kept in mind that, with the exception of one unrelated test, the supplied stressmark results were all from 
simulations.  The programs were run in the absence of any competing processes or unrelated OS overhead, but the 
same general conditions existed for both the HOST and the PIM simulations. 

The results suggest that the PIM approach is appropriate for cellular processing.  The stressmark requiring the most 
global access, Pointer, suffered a performance loss against the baseline.  Speed gains on the other stressmarks were 
good, though more inter-PIM communication generally led to lower performance. 
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4 IRAM 
The IRAM (Intelligent Random Access Memory) project31 proposed to develop single- and multiple-chip systems for 
data-intensive applications.  The single-chip combines a processor and high capacity DRAM to deliver vector super-
computer-style sustained floating point and memory performance at reduced power.  An IRAM is intended to be 
smaller, use less power, and be less expensive than conventional machines with separate chips for the processor, 
external cache, main memory, and networking.  The IRAM design is reported to be scalable within a chip, allowing 
processing power to vary with memory size or power budget, without changes to the architectural specification.  
IRAM was developed to be programmable using traditional high-level languages, though additionally new software 
and compiler technologies were developed to utilize IRAM’s high bandwidth. 

A multi-chip system called ISTORE was developed to extend processing in memory to other levels of the storage 
hierarchy.  The focus of that work was to provide a scalable, self-maintaining, data-intensive computing system, 
exchanging centralized processing and interconnect for less expensive processors which gain performance through 
their high bandwidth access to data.  The processing power in the storage hierarchy is also used to increase reliabil-
ity through monitoring and automatic reconfiguration. 

4.1 Description 

The VIRAM (Vector IRAM) architecture utilizes a delayed vector pipeline32 to hide memory latency; consequently, 
there is no need for caches.  Instead, VIRAM is built around a banked, pipelined, on-chip DRAM memory that is 
well matched to the memory access patterns of a vector processor.  In addition to the vector processor and embedded 
DRAM, VIRAM has a superscalar MIPS core, a memory crossbar, and an I/O interface for off-chip communication.  
The prototype implementation of VIRAM is designed to run both the vector and scalar processors at 200MHz.  It 
has 16 MB of DRAM organized into eight banks with no subbanks, four 100MB/s parallel I/O lines, a 1.2V power 
supply, and a power target of 2 watts. 

The team calculated VIRAM peak performance (using multiply-adds) at 3.2GFLOP/s for single-precision floating-
point, 6.4GOP/s for 32-bit integer, and 12.8GOP/s for 16-bit integer operations.33 

4.2 Measurements 
The team utilized codes and some data from the DIS Suite, but generally, the testing was limited.  In some cases, 
selected portions of the stressmark were executed, while in others, a subset of the tests was performed.  Only single-
chip performance was measured. 

                                                           
31 http://iram.cs.berkeley.edu 
32 In such a pipeline the execution of all arithmetic operations is delayed for a fixed number of clock cycles after issue to match 
the latency of a worst-case memory access, thereby freeing the pipeline’s issue stage.  In this way, the next instruction can be 
issued, and thus the pipeline does not stall for RAW hazards.  See Krste Asanovic, Vector Microprocessors. PhD thesis, Univer-
sity of California, Berkeley, 1998. UCB//CSD-98-1014.  Also see Christoforos Kozyrakis. A media-enhanced vector architecture 
for embedded memory systems.  Technical Report UCB//CSD-99-1059, University of California, Berkeley, July 1999. 
33 Randi Thomas, An Architectural Performance Study of the Fast Fourier Transform on Vector IRAM, Master of 
Science Report, UC Berkeley, June, 2000. 
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All measurements were taken from a near-cycle-accurate simulator.  Some of the larger data sets were not feasible 
because of the limitations of simulation.  The team observed that processing rates reach a plateau quickly (i.e., at 
small problem sizes) on IRAM, for most of the problems. 

Of primary interest to this study was the issue of what happens when the problem size is larger than the IRAM can 
hold (13 MB total).  Unfortunately, the simulator was not set-up for such tests, and no results in that area are re-
ported. 

4.3 Benchmarking Environment 
For comparison with the VIRAM design, the team selected a set of commercial microprocessor systems. Most were 
high-end workstation or PC processors, but a low-power Pentium III was also included.  Details of the systems are 
shown in the table below. 

 SPARC IIi MIPS R10K Pentium III Pentium 4 Alpha EV6 

Make Sun Ultra 10 Origin 2000 Intel Mobile Dell Compaq DS10 

Clock 333MHz 180MHz 600MHz 1.5GHz 466MHz 

L1 16+16KB 32+32KB 32KB 12+8KB 64+64KB 

L2 2MB 1MB 256KB 256KB 2MB 

Memory 256MB 1GB 128MB 1GB 512MB 

4.4 Matrix Stressmark 
The IRAM team did not strictly utilize the DIS Matrix Stressmark.  However, the team did utilize the SPMV portion 
for analysis and comparison with other architectures.  The following chart shows the performance of VIRAM and 
several other architectures, for several sparse-matrix storage formats and algorithms.  The matrix parameters were 
set at N = 10K and M = 177 782. 
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While the VIRAM is vector-oriented, all of the machines used for comparison are superscalar and cache-based.  The 
different performance characteristics are clear in the chart.  The Segmented-Sum and ELLPACK formats vectorize 
well, and show a greater performance disparity between VIRAM and the other architectures. 

VIRAM performance is relatively constant across formats, resulting in consistently better performance than other 
machines for the ELLPACK and Segmented-Sum formats.  The CRS and CRS-banded formats exhibit better per-
formance on the two recent machines with much higher clock rates, Pentium 4 and Alpha EV6; but they are much 
worse on the UltraSPARC II and MIPS R10000. 

Note that the problem as tested fit within a single VIRAM chip. 
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4.5 Neighborhood Stressmark 
For Neighborhood, the team used inputs n01, n02, and n03.  All three of these involve a 5002-pixel image, with 7, 
11, or 15 bits of dynamic range, respectively.  Emphasis was placed upon vectorizing the histogram and logarithm 
routines in the provided reference implementation, and the results given here are only for those portions of the 
stressmark code.34  Because there is no math library for VIRAM, a simple polynomial approximation that produces 
3-4 correct decimal digits was used.  When comparing with other machines, the team used the same approximate 
logarithm function, except when the built−in logarithm function was faster. 

Three histogram optimizations were tested: 

• Retry is the default optimization provided by Cray’s vcc compiler.  It attempts to vectorize the histogram 
computation by detecting and compensating for duplicates.  This entailed essentially no source code 
changes for the compiler performed the optimization automatically. 

• Privatization ensure that the vectors of updates to the histogram are independent: each strip of 16 data ele-
ments updates 16 different histogram copies that are summed at the end. 

• A sort−diff−find−diff (sort) algorithm exploits the fact that it is relatively simple to update a histogram on a 
vector processor when the input data are sorted.  Groups of 64 elements (the size of a VIRAM register of 
integers) are sorted, and the histogram is updated on a whole group in one step. 

The following graph shows the results.  Four experiments (Retry, Priv, Sort 32, and Sort 16) represent the VIRAM 
architecture.  (The Retry 0% configuration indicates the default compiler algorithm, run on data of the same size but 
without any duplicates.  It is shown for reference only.)  The remaining experiments give the results of the basic 
code running on each of five other architectures. 
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The results show that on VIRAM, the sort method gives the best performance over the range of bit depths.  They 
also show the improvements that can be obtained when the algorithm is tailored to shorter bit depths.  The Cray 
method performs poorly primarily because of the presence of many duplicates.  The code to compensate for dupli-

                                                           
34 It is presumed that performance of the VIRAM architecture would be good on the kernel-oriented portion of the 
stressmark relative to typical superscalar, cache-based systems. 
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cates essentially executes in scalar mode and so degrades performance.  Note that as the bit depth increased the Cray 
method improved due to fewer duplicates in the sum and difference data arrays.  The privatized code suffers because 
it needs to sum up the histogram copies at the end and so expends more operations as the size of the histogram in-
creases. 

The superscalar/cache-based machines benefit when there are duplicates, since they may hit in the cache when up-
dated a second or third time.  We see sharp decreases in performance when the histograms are too large to fit en-
tirely within cache (e.g., 15-bit input).  In that case, VIRAM’s performance compares well with the faster 
microprocessors. 

4.6 Transitive Closure Stressmark 
The IRAM team did not run any of the provided test files from the Transitive Closure Stressmark, but it did supply 
results for a small range of parameters.  Since the architecture/algorithm combination was not sensitive to the num-
ber of edges in the graph, only the number of vertices was varied. 

Below is a graph provided by the team showing the time for Transitive Closure runs for the four architectures de-
scribed above. 
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To find processing rate, the team calculated MOPS = 2 (op) × n2 (number of vertices) / time (sec) / 100K.  The resul-
tant rates are shown in the graph below. 
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Since each machine has a different clock cycle, it is hard to compare the performances.  The graph below gives a 
rough estimate of how Transitive Closure would run on the different machines if the clock rate were normalized to 
300MHz.  These numbers are computed by multiplying the measured MOPS rate by 300 MHz divided by the listed 
actual cycle time.  
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Though real implementations of these architectures might perform quite differently than shown, it is probably fair to 
assume that the high relative performance shown by the IRAM would persist.  As tested, though, the IRAM per-
formance would drop to zero for problems with greater than ~600 vertices.  The performance of an IRAM system 
configured to handle such cases cannot be inferred from the data. 
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4.7 Corner-Turn Stressmark 
The IRAM team provided results35 for a corner-turn operation.  This test was not strictly the stressmark as specified 
for DIS, so results cannot be used for direct comparison.36 

An out-of-place corner-turn of 1Kx1K 32-bit words was performed.  At a 200MHz VIRAM clock rate, the operation 
required 5.56x105 cycles, or 2.78ms. 

4.8 FFT Benchmark 
The IRAM team did not implement the DIS DFT Benchmark.  However, some FFT analysis was reported.37  Below 
is an excerpt from that study: 

We compare the performance of our most-optimized FFT algorithm on a simulated version of 
VIRAM to that of eleven high-end fixed- and floating-point Digital Signal Processors (DSPs) and 
DSP-like architectures, and find that VIRAM outperforms all of the fixed-point DSPs and all but 
two of the special-purpose floatingpoint FFT DSPs. On 1024-point FFTs, VIRAM achieves 1.3 
GFLOP/s in floating-point mode, and 1.9 GOP/s in fixed-point mode. 

Despite its high performance relative to the DSPs, however, we find that the VIRAM architecture 
is being underutilized by as much as two thirds while running the FFT algorithm. We thus embark 
on an architectural analysis to determine the underlying cause of this underutilization, and dis-
cover that it results from bottlenecks in VIRAM’s memory functional units and memory access 
conflicts in VIRAM’s memory system. For larger FFTs, the memory system impact becomes more 
severe, and we find that the number of memory banks and subbanks plays a crucial role in the 
scalability of our algorithm’s performance to large FFT sizes. 

The VIRAM design was reportedly modified after the above tests; some improvements should have resulted.  New 
measurements were not supplied. 

                                                           
35 Results generated by the SLIIC team from USC-ISI (East). 
36 However, the parameters of the test were very similar to those of test ct03. 
37 Randi Thomas, An Architectural Performance Study of the Fast Fourier Transform on Vector IRAM, Master of 
Science Report, UC Berkeley. 
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4.9 GUPS 
The IRAM team gave the following results for its GUPS tests: 
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4.10 Power Consumption 
The IRAM team supplied the following comparison of power (in terms of operations per watt) for several bench-
marks, including one (Mesh) not reported here. 
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4.11 Programming 
For benchmarking, the IRAM team utilized its compiler, which is based on Cray’s vectorizing C compiler.  The 
compiler allows programmers to assert that a loop is free of dependencies.  Presumably, in the absence of this asser-
tion, the compiler will do its best to identify dependencies and do loop transformations.  It is unknown to what de-
gree the performance reported here is dependent on manual assertions.  Certainly, legacy code is fully supported, 
and at least partial gains are available for it.  

4.12 Remarks 
In its benchmarking report, the team made a valuable observation: 

While memory is important in all of our benchmarks, simple bandwidth was not sufficient.  Most 
of the benchmarks involved irregular memory access patterns, so address generation bandwidth 
was important, and collisions within the memory system were sometimes a limitation. 

Like most other data provided for this report, the results given here are all based on simulations.  The team utilized 
codes and some data from the DIS Suite, but not in accordance with the supplied benchmark specifications.  Still, 
their results showed a marked performance advantage of IRAM, especially after normalizing the clock rates.  Excel-
lent power efficiency was also found, relative to multi-chip systems. 

The tests were arranged to fit within a single IRAM chip.  At that size, the problems may also fit in today’s cache 
hierarchies.  The high performance of the PIII system indicates that the tests did not fully exercise the memory re-
quirements of DIS problems.  The tests were biased in the sense that only things that could be kept on-chip within 
the IRAM were tested.  The cache-based computers were configured and ready for larger problems. 

That said, the IRAM team was focused primarily on developing the chip.  The team believes a multi-chip system 
based on the IRAM would be a candidate for DIS problems.  Development work and experimentation would be re-
quired to properly determine the value and limitations of IRAM in that domain. 
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5 Smart Memories 
The Smart Memories project38 is creating the computing infrastructure for the next generation of embedded applica-
tions.  The goal is to create a more universal computing component than today's microprocessor to provide the 
power, performance and manufacturing cost within a factor of three to a custom solution.  This effort covers from 
programming model down to VLSI design and includes software tools to help programmers tune their application.  
This project leverages two important changes in computers systems: the basic wire limits of the underlying VLSI 
technology and the changing nature of the application space toward more streaming data.  By modifying active re-
peaters and making them into switches, the wires will be used to connect memory banks to each other and to the 
processor interconnect with some reconfigurable logic to provide added functionality to create a ‘smart’ memory 
block.  The same programmable wires are then used to connect these smart memories to the processors to create a 
multiprocessor where both the memory and the processor are programmable.  Smart memories architecture is con-
figurable to support parallel, stream-based, and legacy applications. 

5.1 Description 
The Smart Memory program is leveraging two important changes in computer systems—the basic wire limits of the 
underlying VLSI technology, and the changing nature of the application space toward more streaming data.  This 
smart memory architecture is optimized for the wire-limited technologies of the future, and is enabled by recent ad-
vances in architecture, operating systems and compilers.  In future advanced chips, wires will need active repeaters 
to help reduce the long wiring delays.  By modifying these repeaters and making them into switches, we create re-
configurable wires with the same performance as dedicated wires.  These wires will be used to connect memory 
banks to each other and to the processor interconnect with some reconfigurable logic to provide added functionality 
to create a `smart' memory block.  The same programmable wires are then used to connect these smart memories to 
the processors to create a multiprocessor where both the memory and the processor are programmable. 

A smart-memory system will function as a universal computation server because it will efficiently support many 
different modes of operation: 

• For parallel applications, smart memories will be used to enhance the functionality of individual nodes. For 
example, smart memories will prefetch non-unit stride data for sparse applications, or they will be used to im-
prove instruction bandwidth for database applications with poor instruction cache behavior. 

• For stream-based applications, the interconnect will be reconfigured to deliver the performance of hardwired 
designs. 

• For legacy applications, the smart memory will be used to implement mechanisms for exploiting fine-grain, 
dynamic parallelism automatically using speculative execution techniques. 

5.2 Measurements 
The Smart Memories team supplied no benchmarking data or report.  An experiment was done by the Scalable 
Graphics Systems team, which utilized a Smart Memories block for a streaming ray-tracer.  The experiment is dis-
cussed in Section 9. 

                                                           
38 http://www-vlsi.stanford.edu/smart_memories 
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5.3 Programming 
No benchmarks were programmed, so no examples of source code were available. 

Since one of the goals of the effort was to develop an architecture that is configurable to support legacy applications, 
it is presumed that legacy code could operate on the system with no source modification.  It is likewise assumed that 
no performance penalty would result in this configuration.  It is unknown whether performance benefits would be 
available without source code modification. 

5.4 Remarks 
As no programming or DIS benchmarking details were provided, no conclusions are drawn.  The design documents 
presented during project reviews and technical meetings suggest potential for value to DIS problems. 
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6 Imagine 
Imagine39 is designed to perform as a special-purpose image-processing, signal-processing, or graphics engine with 
the flexibility of a general purpose computer and a programmable signal processor.  Fast stream operations are sup-
ported through a combination of vector processing, VLIW arithmetic clusters, a streaming memory system, and 
conditional vector operations.  Imagine uses a three-level bandwidth hierarchy organized to support stream opera-
tions to overcome bandwidth bottlenecks of global register files and memory systems.  Streams are transferred be-
tween memory and a 32GB/s stream register file (SRF) by a four-bank streaming memory system (2GB/s) that 
reorders references to improve bandwidth.  Once a stream is loaded from memory, it is typically circulated between 
the SRF and the arithmetic clusters several times before returning the result to memory.  Finally, during a computa-
tion kernel, intermediate results are forwarded directly between local register files associated with the arithmetic 
units without need to return to the global register file, using the 544GB/s local register bandwidth.  Imagine over-
comes the performance-limiting effects of conditional operations by sorting streams according to a conditional vari-
able rather than through conditional control flow.  Imagine achieves flexible performance by using a streaming 
architecture that exposes the parallelism and locality inherent in many signal- and image-processing applications. 

6.1 Description 

The Imagine stream processor40 is an experimental prototype designed in a Texas Instruments 0.15 µm Ldrawn 
CMOS standard cell technology.  It provides full pro-
grammability and high performance by effectively 
exploiting the data-level and instruction-level parallel-
ism available in computationally demanding media 
applications.  At 1.7V and 232 MHz, Imagine provides 
a peak performance of 9.3 GFLOPS and 18.6 GOPS 
on floating-point and 16-bit integer media applications 
while dissipating 6.4 W. 

The figure to the left contains a block diagram for 
Imagine, which functions as a co-processor to a scalar 
host CPU.  The streaming memory system executes 
stream loads and stores by reading or writing a se-
quence of related data records into a contiguous block 
of storage in the stream register file (SRF), a 128KB 
on-chip SRAM.  Eight SIMD arithmetic clusters exe-
cute kernels that read and write streams from the SRF.  
The micro-controller sequences and issues VLIW in-
structions during kernel execution.  The network inter-
face provides 2.3 GB/s of input and output bandwidth 
to support multi-Imagine systems and I/O transfers. 
Finally, the stream controller manages the operation of 

                                                           
39 http://cva.stanford.edu/imagine 
40 Processor description from Khailany, et al, A 9.3 GFLOPS 6.4 W Programmable Stream Processor for Media 
Applications, unpublished draft provided to the author. 
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all of these units. 

6.2 Measurements 
The Imagine team utilized code from the Neighborhood, Matrix, and Corner-Turn stressmarks, but did not run any 
of the tests supplied with the suite.  All provided results were simulated, typically assuming a core speed of 
400MHz, and a memory system speed of 133MHz.  At this rate, the peak memory system bandwidth is calculated to 
be 2.1GB/s. 

6.2.1 Corner Turn 

The Imagine team did not use the supplied test inputs.  Instead, a series of matrices were turned out-of-place.  The 
following graph shows the average results over four runs of each matrix. 

 
The raw times (upper graphs in the figure) show the expected growth with problem size.  At first look, they do not 
indicate any extraordinary dependence on the shape of the matrix; only on the total number of elements.  The best 
average DRAM bandwidth (lower graph) approaches the theoretical ideal as matrices grow, peaking at about 2GB/s 
when the matrix includes 1M words.  However, two other 1Mword cases show lower average bandwidths.  Inspec-
tion of the data shows that matrices with one dimension less than 256 elements run with reduced efficiency.  There 
does not appear to be any significant gain in efficiency for especially large matrices, but the lack of tests for very 
large corner-turns makes this speculative.  No data are given for matrices with greater than 10M elements. 
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6.2.2 Matrix 

The Imagine team did not use the supplied test inputs for the Matrix Stressmark.  Twenty-two tests were run, with 
matrices ranging from 24 to 29 rows and columns, and density of nonzero elements ranging from 0.01 to 0.4. 

The team provided the following information with respect to implementation of the stressmark: 

Imagine has 8 clusters, which are operated in SIMD fashion.  In order to take advantage of this, 8 
rows of the matrix are read and calculated in parallel. 

In the equation Ax = b, A is a sparse nxn matrix.  Sparse matrix information is expressed by the 
pair of data and index.  One row of the matrix A has two streams—a data stream and a index 
stream which stores the locations of the data in a row.  In the conjugate gradient method, matrix A 
is only used during the time A*P (nxn * nx1), A*X (nxn * nx1) are computed.  Each row can be 
calculated independently in these matrix computations, so this row-major order matrix representa-
tion is justified. 

Because A is a sparse matrix, row computation can suffer from the short stream effects—which 
happen if the size of the stream is short, especially when the matrix is extremely sparse. 

In the implementation, kernel fusions—merges of more than two kernels into the one—were done 
manually in order to reduce the kernel call overhead. 

There are two options to compute matrix-vector multiplications (A*P and A*X) in this implemen-
tation.  The first option is to run the kernel per every eight rows of matrix A, and the second op-
tion is to run the kernel once per all rows of matrix A.  The second option has the longer stream 
size, so it is better for the small size matrices and extremely sparse matrices.  The first option has 
the shorter stream size, but it is easier to overlap the cluster computation and memory operations 
so it is better for larger matrix sizes. 

The results of the experiments are shown in the graph below. 
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The results show that the system achieves memory transfer rates approaching the theoretical maximum when the 
matrices are large and relatively dense.  Smaller, sparser matrices result in short-stream effects, and lower efficien-
cies.  These are mixed results with respect to DIS problems.  While Imagine is able to sustain operations at near-
peak memory bandwidths for very large matrices, the system suffers due to the sparse nature of the problem. 

The data do not support extrapolation for problems of larger matrices with lower densities, because the tests pre-
sume that the streams can fit within the Stream Register File.  When this is no longer possible, strip-mining can be 
employed, but the cost of doing this for Imagine is unknown.  For still larger matrices, even the vectors will not fit 
within the SRF; performance in that configuration is unknown. 

6.2.3 Neighborhood 

The Imagine team did some tests using the example code from the Neighborhood Stressmark, but did not use the 
supplied test data.  The results were supplied too late to be incorporated here. 

From inspection of the raw data, we find: 
(a) Only small images were utilized.  Some of the images had less than 100 pixels; all had less than 20K. 
(b) Only bit-depths of 8 and 10 were tested.  This means the histograms would always fit in registers or nearby 

memory, even for today’s off-the-shelf systems.  And, 
(c) The larger images utilized larger neighborhood settings, meaning that even larger images would see a small 

number of histogram updates. 

We conclude, therefore, that the supplied Neighborhood Stressmark data would not provide as much information for 
this analysis as the implementation commentary provided by the team, paraphrased here. 

The neighborhood stressmark has been written to ensure more computation can be done with the 
same set of streams in the SRF.  This worked well for the generation of sum and difference values 
of pixel pairs, separated by a given distance. 

The histogram generation kernels need many invocations because the clusters have limited tempo-
rary storage, and hence the entire histogram cannot be stored at a time.  In order to achieve this, 
the scratchpad has been used to generate a part of the histogram during each kernel call.  The ker-
nels themselves are long because they are limited by the "divider" unit used for scratchpad look-
up.  Moreover, there is a sequential dependency between memory operations and kernel invoca-
tions since the working set is big.  As a combination, this has proved to be the limitation for the 
neighborhood stressmark. 

The Imagine team’s analysis suggests that—as seen for the Matrix Stressmark—irregular memory accesses can 
undo the gains offered by stream-oriented processing.  

6.3 Programming 
Imagine is a stream-oriented processor.  Though the team developed tools to facilitate its use, it is unlikely that leg-
acy code will enjoy support until significant advances are made in the state of the development art.  For the foresee-
able future, stream-based processing is likely to require substantial manual intervention to fully exploit the value of 
the devices. 

6.4 Remarks 
The data presented here are the result of small tests.  It seems likely that larger problems would perform better—
since they amortize overhead costs more—as long as local storage capacities are not exceeded.  This could not be 
verified for this report. 

High throughput seems to be shown for the tested problems.  However, the streams-oriented processing is not likely 
to deliver performance gains for large, irregular problems.  We predict that performance on Pointer, Update, and 
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GUPS would be poor.  The architecture appears to scale well,41 but the programming model suggests that many ap-
plications will bear a relatively high initial implementation cost. 

                                                           
41 Brucek Khailany, et al., Imagine: Media Processing for Streams, IEEE Micro, Mar/April 2001. 
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7 Scalable Graphics Systems 
The Scalable Graphics Systems project42 focused on building scalable graphics technology to produce and manipu-
late imagery with several orders of magnitude more performance than currently available.  The project implemented 
a prototype graphics system with data-parallel rendering algorithms and appropriate architectural support, and built 
appropriate hardware to efficiently support image display and low-level imaging operations.  The project served as a 
demonstration mechanism for both the Imagine and Smart Memories projects. 

7.1 Description 
The project included a comprehensive system and architecture, most of which was not tested in the context of DIS 
benchmarks, and are not described here.  One portion, the SHARP (Stanford Hardware-Accelerated Ray-tracing 
Project) architecture, was mapped to a hypothetical Smart Memories-based machine43, modeled and simulated at a 
high level. 

7.2 Measurements 
The Scalable Graphics Systems project did not execute any DIS Benchmarks.  However, as part of its demonstra-
tion, SAR ray tracing was shown, utilizing some of the scene data extracted from the DIS test data sets. 

The simulation was very coarse, but based on the Stanford Smart Memories chip, the architecture showed the capac-
ity for 90M ray-patch intersection calculations per second,44 which would approximately meet the DIS goal.45 

The results were based upon the one tesselated model included with the DIS benchmark set, plus approximations of 
some of the other scenes.  However, there was a significant difference between the data used for the tests and that 
provided with the DIS Benchmark Suite: the former employed a regular grid-based acceleration structure, while the 
latter utilized a hierarchical bounding-box model.  Though the tests ultimately generated correct scenes, the models 
used were effectively streamlined by the users a priori. 

It could be argued that this streamlining could be implemented as a preprocessing step and therefore give identical 
results automatically.  However, it is believed that the inefficiencies of the hierarchical representation were placed 
there intentionally to mimic the data-intensive nature of the more difficult real problem.46  With simplified input 
files, it is unclear whether all elements of the intended DIS problem had been addressed.  Additionally, the advan-
tages and limitations inherent in the hierarchical model may not be assumed for the purposes of extrapolation to lar-
ger processing problems as derived from X-Patch. 

                                                           
42 http://www-graphics.stanford.edu/projects/flashg 
43 Timothy J. Purcell, et al, Ray Tracing on Programmable Graphics Hardware, ACM Transactions on Graphics, 
Vol. 21, No. 3, July 2002. 
44 Presented by Pat Hanrahan at the DARPA DIS Principal Investigator’s meeting, March 2002. 
45 There were actually two DIS goals:  1M ray-patch intersections per second per chip at mid-term, and 100M ray-
patch intersections demonstrated at program conclusion. 
46 Engineers at ERIM International who were familiar with the problem confirmed this belief.  The engineers who 
developed the DIS Ray Tracing benchmark were no longer with the firm and could not be located for comment. 
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Nevertheless, even for a grid-based structure, the bandwidth required to support such a throughput of intersection 
calculations is significant, and the experiment shows that stream-based calculations on a stream-oriented configura-
tion of Smart Memories may benefit DIS problems. 

7.3 Programming 
The SHARP ray-tracing architecture was developed specifically for its one purpose.  It cannot be considered as a 
general-purpose processor in the context of this evaluation.  The Smart Memories hardware upon which it could be 
based is discussed in Section 7 of this document. 

7.4 Remarks 
Though there were no experiments that directly utilized DIS Benchmarks, the experiment performed with the 
SHARP ray-tracing architecture suggests that stream-based approaches may benefit certain DIS applications.  Al-
though the SHARP architecture is directed toward programmable graphics hardware, and the Smart Memories-based 
machine met those requirements, the experiment did not explicitly demonstrate the value of that particular imple-
mentation above other programmable graphics implementations. 
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8 HiDisc 
The Hierarchical Decoupled Instruction Stream Computer (HiDISC) system47 adds a processor between each of the 
three levels of the memory hierarchy.  Each processor executes an independent stream of instructions, allowing the 
compiler to generate code to improve the performance seen by each level of the memory hierarchy.  

8.1 Description 
HiDISC provides low memory access latency by introducing enhanced data prefetching techniques at both hardware 
and software levels.  Dedicated processors for each level of the memory hierarchy act in concert to mask the mem-
ory latency.  Concurrency is achieved by separating the original, single instruction stream into two streams based on 

the functionality—access or exe-
cute—of the instructions.  Asyn-
chronous operation of the streams 
provides for a temporal distance48 
between the streams, making pre-
fetch possible. 

The HiDISC architecture is a 
variation on traditional decoupled 
architectures.  In addition to the 
two processors of the original de-
sign, HiDISC utilizes an additional 
one for data prefetch.  A diagram 
of the system follows. 

Along with the model, a compiler 
was developed that forms three 
streams from the original program: 
the computing stream, the memory 
access stream, and the cache man-
agement stream.  These streams 
are stored separately in the pro-
gram memory of each of the proc-
essors.  Some synchronization 
overhead is introduced to the 
streams. 

 

                                                           
47 http://www.isi.edu/acal/hidisc 
48 Sometimes referred to as slip distance. 

HiDISC 

Access Processor 
(AP) 

2-issue 

Cache Mgmt.  
Processor (CMP) 

 
 

Registers 

 

3-issue 

 

L2 Cache  
and Higher 

Level 

Computation 
Processor (CP) 

L1 
Cache 

3-issue 
Slip Control 

Queue 

Store Data 
Queue 

Store Address 
Queue Load Data 

Queue 



 

 85

8.2 Measurements 
All experiments for this project were run on a special-purpose simulator based on the SimpleScalar 3.0 tool set.49  
The simulator was execution-based, with an architecture description detailed enough to include pipeline states.  The 
system used as a baseline was sim-outorder, with 16 register update units and 8 load/store queues.  Other reported 
simulation parameters are shown in the table below. 

Branch predict mode Bimodal 

Branch table size 2048 

Issue width 4 

Window size for superscalar RUU: 16 LSQ: 8 

Slip distance for AP/CP 50 cycles 

Data L1 cache configuration 128 sets, 32 block, 4 -way set asso-
ciative, LRU 

Data L1 cache latency 1 cycle 

Unified L2 cache configuration 1024 sets, 64 block, 4 - way set as-
sociative, LRU 

Unified L2 cache latency 12 cycles 

Integer functional unit ALU( x 4), MUL/DIV 

Floating point functional unit ALU( x 4), MUL/DIV 

Number of memory ports 2 

 

In its final report50, the HiDISC team presented a series of experiments showing that the SuperScalar architecture 
exhibited lower instructions-per-clock (IPC) with longer miss latencies for most DIS benchmark codes.  The results 
reported here are all based on the longest latency tested: 120 cycles. 

                                                           
49 Doug Burger and Todd M. Austin,  The Simplecalar Tool Set, Version 2.0.  Technical report, University of Wis-
consin-Madison, 1997. 
50 http://pascal.eng.uci.edu/projects/HiDISC/Final_report.pdf 
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The upper bar chart in the figure below gives the IPC for one test file in each of seven benchmarks.  The bars repre-
sent: 

• SuperScalar.  This is the baseline configuration. 
• CP + AP.  Computation Processor and Access Processor. 
• CP + CMP.  Computation Processor and Cache Management Processor. 
• HiDISC.  Computation, Access, and Cache Management Processors. 

 

 
The lower graph shows the IPC gain compared to the SuperScalar baseline.  Field is the most regular stressmark 
kernel.  It is not surprising that little gain is available from the already-high IPC rate.  According to the HiDISC 
team, the Pointer and Update stressmarks show especially good results because pointer chasing can be executed far 
ahead with the decoupled access stream. 

8.3 Programming 
The HiDISC compiler automatically separates the access and execute streams.  No special source-level operations 
are required, and legacy code can receive the full benefit of decoupled processing. 
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8.4 Remarks 
The HiDISC experiments included a good variety within the scope of DIS benchmark applications, but caution 
should be exercised during interpretation, since only one test problem was simulated for each. 

By our calculations, the system achieved the best results for the Pointer stressmark, since the access stream can 
execute well ahead of the computation stream.  Unfortunately, this would only be true for window sizes of one.  
Performance is expected to decline for Pointer tests with other window sizes.  We expect that problems requiring 
high GUPS performance would not benefit from the HiDISC approach. 

In its report, the team observed, “It should be noted that the working set for the Data Management Benchmark fits 
quite well in the cache.  As should be expected, a program with a small working set is not a good candidate for a 
prefetching architecture such as HiDISC.”  The team did not supply results for Data Management Benchmark 
working sets that did not fit within cache.51 

According to the HiDISC team, the DIS benchmarks perform well with the decoupled processing in part because 
they include many long latency floating-point operations which can hide memory latency.  The stressmark suite is 
more “access-heavy”.  The resultant disproportion between the two processing streams limits the performance of 
HiDISC.  The team concludes that the proper application domain for decoupled architectures includes a balance 
between computation and memory access. 

This is a mixed result for DIS.  The decoupling allows hiding of memory latency in a more comprehensive fashion 
than simple prefetching, but DIS problems are frequently, by their nature, “access-heavy”.  As memory access 
latencies increase, the decoupling must likewise increase if processor starvation is to be avoided.  Unfortunately, a 
given algorithm ultimately has a fixed decoupling potential.  Attempts to adjust this potential by adjusting the 
algorithm were explored in other DIS projects. 

                                                           
51 The dm08 test working set peaks at about 2MB.  Test files requiring up to 1GB were provided. 
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9 Aries 
The Aries project52 is developing and prototyping a new, secure, parallel language and supporting architecture for a 
wide class of physical simulation and symbolic information processing tasks.  The target architectures under design 
for these applications are SIMD-based computers, which also respond as primary memory and participate fully in 
the Aries multiprocessor array. 

9.1 Measurements 
The Aries team supplied no benchmarking data or report. 

9.2 Programming 
No benchmarks were programmed, so no examples of source code were available.  Since one of the goals of the 
effort was to develop a new language, targeted primarily toward SIMD processing, it is highly unlikely that legacy 
code would enjoy any direct support. 

9.3 Remarks 
No benchmark results were available for evaluation. 

 

                                                           
52 http://www.ai.mit.edu/projects/aries/aries.html 
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10 Impulse 
The Impulse project53 developed a memory controller that adds an optional extra level of address remapping, reduc-
ing the wastes of bandwidth and cache capacity afflicting current systems.  A compiler was developed to support 
automatic detection and exploitation of opportunities for Impulse optimizations.  The compiler can analyze data lo-
cality, improve it statically with loop optimizations, and introduce appropriate Impulse data remappings, prefetch-
ing, and superpage formation in off-the-shelf programs.  The Impulse system enables scatter-gather access of sparse 
or arbitrarily organized data. 

The Impulse approach is to modify the main memory controller, not the CPU or memory itself.  It can therefore be 
retrofitted to existing systems.  The team’s target was a 10-fold increase in effective memory bandwidth of memory-
bound programs that exhibit irregular memory access patterns. 

10.1 Description 
Impulse's extra level of address indirection is implemented as follows.  Consider a workstation that employs a mi-
croprocessor that exports a 32-bit physical address and thus can address four gigabytes of physical memory.  If only 
one gigabyte of DRAM is installed in the machine, an access to the other three gigabytes of physical addresses will 
generate a bus error.  Impulse allows software to specify remapping functions that translate these so-called shadow 
physical addresses to physical addresses (ones directly backed by DRAM). Rather than moving entire cache lines to 
the cache/CPU, where only a fraction of their contents will be used, Impulse can compress sequences of useful val-
ues into cache-line-sized blocks. 

The optimizations that this remapping enables include scatter-gather access of sparse data, creation of superpages 
from disjoint and unaligned physical memory, no-copy tiling of dense matrices, and pointer-based prefetching of C 
and C++ objects. 

A novel feature of Impulse is the ability for a processor to issue multiple (up to 32) load requests to the memory 
controller in a single bus operation.  The processor does so by filling a cache line with offsets or addresses, flushing 
the line back to the controller, and then fetching a corresponding data block where the controller has been config-
ured to place the requested data.  This optimization speeds up random pointer fetching by more than a factor of 
three54, and is applicable in many situations where static remappings are not. 

The team automated the use of Impulse by developing a compiler, which analyzes data locality and applies appro-
priate Impulse optimizations.  Language extensions were also provided, so developers can manually introduce re-
mappings to their code. 

10.2 Measurements 
The team delivered results for four DIS stressmarks:  Pointer, Matrix, Transitive Closure, and Corner Turn.  Tests 
were performed on a simulator, and later verified with hardware.55  The simulation used URSIM, an execution-
driven simulator derived from RSIM56.  All tests were done twice: once with remapping support, and once without. 

                                                           
53 http://www.cs.utah.edu/projects/impulse 
54 According to the project summary.  The specific claim was not tested for this report. 
55 Data provided for this report are all the result of simulations. 
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The following simulation parameters—modeled after a R10000-based SGI O200 system—were reported: 

Clock rates Processor: 450 MHz 
System bus, memory controller, and SDRAM: 150 MHz 

Processor Four-way issue superscalar, with a 32-entry instruction window and a 16-entry memory 
queue 

Branch predic-
tion 

512 entries, two-bit prediction scheme, can predict four branches deep 

Page size The base page size is 16KB.  Superpages are built from powers-of-two multiples of base 
pages.  The largest superpage is 64MB.  The TLB is fully associative and hardware-
managed.  It has single-cycle latency and 64 entries.  Each TLB entry is able to map a 
pair of properly-aligned, consecutive pages. 

L1 Instruction 
cache 

Non-blocking, virtually indexed, physically tagged, two-way associative.  It has 32KB 
of storage, 64B lines, and a one-cycle latency. 

L1 Data cache Non-blocking, write-back, virtually indexed, physically tagged, two-way associative.  It 
has 32KB of storage, 32B lines, and a one-cycle latency. 

L2 cache Non-blocking, write-back, physically indexed, physically tagged, two-way associative. 
It has 256KB of storage, 128B lines, and a six-cycle latency with a two-cycle repeat 
rate. 

System bus The system bus multiplexes addresses and data.  It is 64 bits wide, has a three-cycle 
arbitration delay and a one-cycle turn-around time, and supports eight outstanding cache 
misses.  It supports critical-word-first.  The memory latency, defined as the time be-
tween when a request is presented on the bus and when the first word returns to the 
processor, is 14 bus cycles for a normal access, and 7 bus cycles for an access that hits 
in the Mcache. 

DRAM banks The DRAM backend contains two 128-bit data buses, each of which has four banks.  
Banks are interleaved at the L2-cache-line level. 

Memory con-
troller 

The Impulse memory controller contains eight shadow descriptors.  The shadow engine 
contains two data-path pipelines.  Each pipeline has a dedicated MTLB, which is four-
way set associative, has (32) 128-byte entries, and a one-memory-cycle latency.  For a 
shadow address, the shadow engine generates the first physical address in four cycles  
and then one address per cycle thereafter if no MTLB miss occurs. 

Compiler All benchmarks compiled using the SPARC SC5.0 compiler, with an optimization level 
of "-xO4". 

Note that the automatic Impulse compiler was not utilized for these benchmarks.  Small changes to source code were 
made to manually invoke Impulse optimizations.  Examples of the code changes are provided later in this section. 

                                                                                                                                                                                           
56 http://rsim.cs.uiuc.edu/rsim/ 
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The following graph shows the raw reported times for each of the four stressmarks. 

 
From a cursory inspection of the raw data, it can be seen that Impulse offers a consistent performance gain.  Very 
few tests show a loss of performance, and we will see that these cases are for tests requiring very small amounts of 
memory.  There is no ambiguity about the gains, since the comparison is between configurations including the same 
processor, bus, clock rates, and memory chips. 

10.3 Pointer 
The Impulse team described its implementation of the Pointer stressmark as follows: 

To optimize Pointer using Impulse, the basic idea is first to swap the "l" for loop with the "hops" 
while loop, then to gather the first windows for all threads into dense cache lines, then to let each 
thread process its respective window and generate address for the second window, then to gather 
the second windows for all threads, and so on. 

Below is the source for both versions (remapped and non-remapped) of the stressmark.  The code illustrates the re-
quired level of programmer involvement when manually mapping shadow addresses. 
/* 
To improve the performance of this stressmark, we swap the inner loop  
with the outer loop and then use "dynamic cache-line assembly".  The 
basic idea is to gather the first windows of all threads, then let all 
threads work on their respective windows to generate the addresses for 
the second windows; then gather the second windows for all threads, 
generate addresses for the third windows; and so on. 
*/ 
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#ifndef IMPULSE 
   for (l = 0; l < n; l++) { 
      hops = 0; 
      minStop = thread[l].minStop; 
      maxStop = thread[l].maxStop; 
      index  = threads[l].initial; 
      while ((hops < maxhops) && 
             (!((index >= minStop) && 
                (index < maxStop)))) { 
         .....; 
         index = (partition + hops) % (f - w); 
         hops++; 
      } 
      threads[l].hops = hops; 
   } 
#else /* Remapping version */ 
   /* setup Impulse MMC to map ap[i] => fields[idx[i]] */ 
   Impulse_setup(fields, w, (unsigned *) &ap, (unsigned *) &idx); 
 
   /* Gather the first windows of all threads */ 
   for (i = 0; i < n; i += OBJS_IN_L2CLINE) { 
      for (j = i; j < i + OBJS_IN_L2CLINE; j++) { 
         idx[j] = threads[j].initial; 
         threads[j].hops = maxhops; 
      } 
      prefetchline((unsigned) &(ap[i])); 
   } 
   for (hops = 0; hops < maxhops; hops++) { 
      completed_threads = 0; 
      for (j = 0; j < n; j += OBJS_IN_L2CLINE) { 
         k = MIN(j + OBJS_IN_L2CLINE, n); 
  for (i = j; i < k; i++) { 
     ......; 
     idx[i] = (partition + hops) % (f - w); 
            if (this thread completes) { 
               some bookkeeping; 
               completed_threads++; 
        idx[i] = -1; 
            } 
  } 
         flush_then_prefetchline((unsigned) &(ap[j])); 
      } 
      if (completed_threads) { 
         /* Compress "ap" by taking out completed threads. Since this happens 
            at most "n" times, we don't care the efficienty. */ 
         for (j = i = 0; j < n; j++) { 
            if (idx[j] != -1) { 
               ap[i++] = ap[j]; 
               some bookkeeping; 
            } 
         } 
         for (; i < n; i++) 
            idx[i] = 0; 
         n -= magic_number_found; 
      } 
   } 
#endif 
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It was observed that the team did not execute any of the tests that included a window parameter greater than one.  
When queried about this, the team responded: 

Impulse MMC currently can handle only power-of-two object sizes, so we cannot use it for w > 1, 
because w must be an odd number.  We normally pad odd-sized objects, however, padding cannot 
work for this benchmark.  Impulse MMC also requires each scattered/gathered object to be aligned 
with its size.  For instance, if the size of an object is 16, the last four bits of its address must be 
0000.  In Pointer, a window can start at any position of the array, thus may not be aligned with the 
window size.  For example, assuming A[0] = 0x100000, a window of three elements starting at 
A[2] (i.e., 0x100008) will not be properly aligned if we expand it to four elements.  One possible 
way to gather data when w > 1 is to generate addresses for each element, instead of each window, 
but we haven't tried to experiment with this approach yet. 

Impulse MMC always gathers a full cache line for a shadow request.  When n < 8, n windows can 
fill only part of a cache line; gathering of  the other part of the cache line would be wasted, so Im-
pulse is unsuitable for such cases.  As a matter of fact, remapping's speedup for the standard set of 
inputs are not as good as those we published in our papers.  We used an input with 64 threads, 
while all standard inputs have no more than 16 threads. 

The following graph shows the data in three forms:  raw, by processing rate (i.e., normalized by work), and process-
ing efficiency. 

 
After calculating the processing rate, the data points associated with tests p12 and p21 showed unusually slow proc-
essing rates, both for the baseline (non-remapping) and Impulse (remapping) configurations.  Those data were there-
fore discarded.  It is likely that an error in random number generation resulted in more pointer ‘hops’ for the Impulse 
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team than the benchmark required.  The Impulse team did not provide output files, so correct execution of the re-
maining tests is assumed.  The analyses here do not suggest any problems other than the two aforementioned tests. 

The efficiency is found by normalizing both series to the best rate of either series.  This is valid since the architec-
tures are identical, outside of the memory controller. 

 

 
Viewing the efficiency against address range (top left of above graph), some efficiency loss for very small problems 
can be seen.  This loss is likely to be the manifestation of initialization overhead for the Impulse system.  Above 
1MB or so, Impulse offers increased efficiency (bottom left).  Note that the efficiency gain is not always high for the 
larger problems.  With the gain shown versus both address range and number of accesses (right), it can be seen that 
tests having large fields but a small number of hops do not experience the full benefit of Impulse. 

10.4 Matrix 
The Impulse team supplied the following code fragment to illustrate the optimization of the Matrix Stressmark. 
/* 
The core computation of Matrix is the sparse matrix-vector product 
alogirhtm implemented in function matrixMulvector(). Impulse uses 
"scatter/gather via an indirection vector" to change indirect accesses 
inside this function to direct accesses. The source code of this 
function looks like the following: 
*/ 
void 
matrixMulvector(double *value, 
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                int *col_ind, 
                int *row_start, 
#ifndef IMPULSE 
                double *vector, 
#else 
                double *alias_vector, 
#endif 
                double *out) 
{ 
   int l, ll; 
   double sum; 
   int tmp_rs, tmp_re; 
 
   ll = row_start[0]; 
   for (l = 0; l < dim; l++) { 
      sum = 0; 
      tmp_rs = row_start[l]; 
 
      if (tmp_rs != -1){ 
         tmp_re = row_start[l+1]; 
 
         for (ll=tmp_rs; ll < tmp_re; ll++) { 
#ifndef IMPULSE 
            sum += value[ll] * vector[col_ind[ll]]; 
#else 
            sum += value[ll] * alias_vector[ll]; 
#endif 
         } 
      } 
      out[l] = sum; 
   } 
} 
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Significantly, only one iteration of the main loop was executed for each problem.  Below are the results graphed 
against the two primary problem specifications. 

 
For this stressmark, it can be seen that performance gains are offered with excellent consistency.  Impulse perform-
ance is never worse than the baseline, and it improves as a function of the matrix size.  When the matrix is small, 
speed increases with the matrix density.  The graph below shows the speed gain relative to the baseline (non-
remapped) configuration. 
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10.5 Transitive Closure 
For Transitive Closure, the Impulse team remapped memory such that both row-major and column-major array ac-
cesses appeared as row-major to the processor.  The efficiencies of the tests are shown below. 

 
The baseline configuration shows the expected performance curve:  efficiency peaks for a small problem size (one 
that is well-suited to maximize the use of the cache hierarchy), then drops substantially for larger problems.  The 
Impulse configuration maintains high efficiency throughout the range of tested problem sizes.  In other words, the 
utility of the processor is extended to a wider range of problems. 
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10.6 Corner-Turn 
For Impulse, remapping allows memory to be accessed in column-major (or other) order as quickly as row-major 
order.  In that sense, an in-place corner-turn is just the time required to map the array into the shadow address space.  
An out-of-place turn simply requires the addition of a memcpy() to duplicate the array.  In practice, an out-of-place 
turn would never be done in an Impulse system, since a single array can be accessed in either order without duplica-
tion. 

The graph below gives the reported time data.  As expected, the Impulse system is dramatically faster for in-place 
operations. 

 

10.7 Programming 
Examples and descriptions of the programming of Impulse appear along with the stressmark implementation discus-
sions above.  The primary consideration here is that the user has the opportunity to declare alternate mappings of 
memory.  To exploit this for new applications and code would require a negligible amount of additional program-
ming effort. 

For legacy code, the Impulse memory controller operates as a normal controller.  In this circumstance, no processing 
gains are offered, but there are no losses, either. 

Though it was not utilized for the benchmarking effort, the team’s compiler appears to allow automatic optimization 
of code, offering performance advantages even without additional programming effort. 
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10.8 Remarks 
Since the Impulse team tested configurations that were identical except for the memory controller, the results give 
the most direct comparison possible.  While measurements provided here were from simulations, we can safely con-
clude that the reckoned value of Impulse is not the consequence of clock rates, CMOS fabrication process, or any 
other of a myriad of design variables. 

After submitting its benchmark measurements for this report, the Impulse team verified its simulations using a pro-
totype system.  It is unknown what disparities, if any, were found.  We assume the verification confirmed the find-
ings presented here. 

The project demonstrated excellent efficiency improvement, resulting in a performance gain of 2.24 on average 
across tested applications.  For in-place corner turns, 2-3 orders of magnitude of gain were shown.57 

The remapping mechanisms enabled by Impulse effectively answer one of the complaints of software engineers: that 
of the loss of throughput when accessing data by means other than row-major order.  The cost of using the language 
extensions is relatively low—or nil if the compiler can completely obviate them.  The Impulse team claims that the 
controller itself is no slower with Impulse, meaning that code which does not or cannot exploit the remapping will 
suffer no performance loss compared to that of standard controllers. 

One limitation of Impulse is the finite availability of shadow address space.  Especially in the case of retrofit to ex-
isting systems, the Impulse approach may be of limited value in machines possessing a large fraction of addressable 
memory as physical RAM. 

                                                           
57 Recall that corner-turning requires a change in memory access configuration.  In an Impulse system, the need to 
accomplish this by moving or copying data is obviated, giving extremely good performance for this step. 
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11 Malleable Caches 
The Malleable Caches project58 is providing the ability to control caches to dramatically improve their utility and 
power consumption.  Through column caching and curious caching, malleable caches permit many architectural 
optimizations, such as power management, adaptive prefetching, and support for vector operations.  A flexible in-
dexing technique enables parts of the cache to be used as general-purpose associative memory.  Finally, a "cache 
pressure gauge" allows better overall use of cache resources in a dynamic, on-line fashion.  These mechanisms en-
able adaptive cache management by providing the user, compiler, or operating system finer control over cache re-
sources, which in turn can result in dramatic speedups for stream-based and real-time applications. 

11.1 Description 
The Malleable Caches project investigated several cache-related strategies, including: 

• Better cache management for multi-processing 
• Better OS scheduling 
• Cache Compression 
• Curious Caching 
• Aggressive, adaptive prefetching 

However, only Column Caching, used for improved cache management of multi-processing systems, was explored 
in the context of DIS benchmarks.  In this scheme, each process gets exclusive use of a portion of the cache, and all 
processes additionally share the use of common portions.  In the experiments described below, the allocation of the 
dedicated portions of cache is static over the life of each process. 

11.2 Measurements 
The Malleable Caches team supplied no benchmarking data or report, however, during its program review in March 
2001, the use of DIS benchmarks was discussed. 

The team found that, run in isolation, the techniques developed for the project did not significantly help the process-
ing of the DIS benchmarks.  The focus, then, shifted toward a more realistic problem domain: the execution of mul-
tiple stressmarks concurrently, with cache shared among processes. 

The team’s experimental results are reproduced here without further analysis.  All of these tests assumed a single-
issue, in-order RISC machine, with one cycle of latency to a single, 4KB, fully-associative cache, and 100-cycle 
latency to DRAM.  The experiments also utilized stressmark code that employed programmer and compiler optimi-
zations, though the details of those optimizations were not given. 

The tests involved simultaneous execution of multiple stressmarks, and sought to compare the merits of a Least-
Recently Used (LRU) policy against static cache partitioning.  The stressmark input parameters were not given. 

                                                           
58 http://csg.lcs.mit.edu/projects/?action=viewProject&projectID=8&projectGroup=Architecture 
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11.2.1 First Experiment 

The first experiment involved two Corner-Turn tasks and one Pointer task.  The graph below gives the Instructions 
Per Cycle (IPC) found by simulation of the LRU (blue diamond) and Column Caching (pink square) policies.  The 
time quantum measurement refers to how many memory references are performed between context-switches. 
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The results show that as the time quantum becomes large, the LRU policy becomes increasingly appropriate.  This 
can be understood simply as a function of the process enjoying more time to clean out the cache, which was polluted 
by the competing processes.  If the quantum is sufficiently large, the LRU will outperform Column Caching.  For 
small time-quanta, though, Column Caching offers a 65% improvement in performance. 
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11.2.2 Second Experiment 

The second experiment showed that for a somewhat more complex situation, Column Caching gave a more signifi-
cant performance improvement.  The graph below shows IPC (again, blue diamond for LRU, pink square for Col-
umn Caching) for a run of eight Corner-Turn tasks with one Pointer task.  For small time quanta, Column Caching 
shows a performance gain of 2.5. 
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11.2.3 Third Experiment 

To illustrate the fact that poor partitioning can lead to bad performance of Column Caching, the Malleable Caches 
team showed the following graph, which shows the same circumstances as the first experiment, except with a differ-
ent static partition.  As can be seen, in this case Column Caching gives no performance gain for small time quanta, 
and a performance loss for large quanta. 
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11.3 Programming 
No examples of source code were available, but the team worked with both sample versions of the stressmark code 
as well as hand-optimized versions.  The team’s approach to cache management did not presume source-level lan-
guage extensions for all explorations, but it did in the case of Column Caching.  It is assumed that the approach 
would fully support legacy code—perhaps with some performance loss—and deduced that performance improve-
ments are only available to code that utilizes special library functions. 

11.4 Remarks 
The maximum performance gain demonstrated by the experiments was 2.5 for the concurrent execution of nine 
stressmark tasks with a small time-quantum between context switches.  The Malleable Caches team was the only 
one to experiment with caches shared between concurrent processes.  The research suggests that column caching can 
improve performance for data-intensive computing under certain conditions, even after code optimizations.  How-
ever, it appears that a method to find the proper balance of columns within the cache does not exist for arbitrary 
(combinations of) problems.  Even when a problem may benefit, the techniques must be applied with particular care; 
performance may suffer otherwise. 

The remaining techniques explored by the team are not within the scope of this document.  However, in its final PI 
meeting presentation, the team summarized its experiments as follows: 

What Did Not Work What Did Work 

Experiments in the domain of general-purpose mi-
croprocessors 
(improving cache is a second-order effect) 

Experiments in the domains of tiled architectures 
and network processors 

Column caching by itself Column and curios caching combined 

Curious caching by itself 
(cache pollution troublesome) 

Adaptive L2 compression 

Non-adaptive L2 compression 
(decompression overhead too costly) 

Cache-aware scheduling 
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12 AMRM 
The Adaptive Memory Reconfiguration and Management (AMRM) project59 developed a cache architecture, smart 
compiler algorithms, and operating system strategies to deliver increased memory system efficiency by enabling 
applications to manage placement and movement of data through the memory hierarchy.  This effort emphasized 
application-adaptive architectural mechanisms, hardware-assisted blocking, prefetching, and dynamic cache struc-
tures. 

12.1 Description 
The AMRM approach to the DIS problem emphasized that performance gains could be realized without reconfigur-
able circuits.  Instead, key portions of the memory hierarchy are made adaptive and controlled by software at com-
pile- and run-time.  Specifically, the cache system and supporting elements are designed to enable multiple data 
movement structures and policies, including: 

• multilevel caches 
• intelligent prefetching schemes 
• dynamic, “cache-like” structures (such as prediction tables, stream caches, and victim caches); and 
• multiple cache configurations. 

The AMRM goals centered on reduction of all three forms of cache-misses (conflict, capacity, and compulsory).60  
To this end, several methods were exploited: 

• Adaptive Line Size Cache (ALS), which uses different line sizes concurrently; 
• Adaptive Fetch Line Cache (AFL),  which uses a more simple adaptation mechanism on the presumption 

that line sizes need only change relatively slowly over the life of a program. 
• Stream Buffers (SB), or prediction-based prefetching; and 
• Victim Cache (VC), which involves a mid-level associate cache placed in the cache hierarchy to hold data 

evicted from the upper-level cache. 

As part of its effort, the AMRM team examined analyzed load stream behavior, and developed a hardware-based 
technique to perform behavior classification on the fly, which will enable machines to be access-pattern-aware.  The 
team classified load patterns into four types:  next-line, stride, same-object (additional misses that occur to a recently 
accessed object), and pointer-based transitions.  The team reported that these four classes represent more than 90% 
of all cache-misses in the examined programs, and that the automatic technique can accurately classify 85% of all 
misses, on average across programs. 

Interestingly, the team reported that complete removal of the access latency for any one of these classes does not 
provide noticeable benefits for most of the tested applications.  A system would have to hide the latency for multiple 
classes in order to yield a substantial benefit. 

                                                           
59 http://www.ics.uci.edu/~amrm 
60 In the case of compulsory misses, strictly speaking AMRM attempted to hide the effects, rather than reduce the 
number of actual misses. 



 

 106

12.2 Measurements 
The AMRM team ran tests for most of the stressmarks, using the Sim-Outorder simulator derived from Simple-
Scalar61 with modified adaptive memory modules.  The Simple-Scalar architecture was based on the MIPS-IV 
ISA62. 

The team generally did not simulate complete operation of each benchmark.  Instead, operation was ceased after 3G 
operations.  Rather than generate the initial data (which is exempt from timing considerations for stressmarks) sepa-
rately, the team utilized a fast-forward simulation parameter to skip the initialization phase and begin metric collec-
tion at the kernel.  So, 3G operations are performed exclusive of the initialization phase. 

The only metric reported was cache miss rate.  The baseline cache configuration included: 
• L1:  32KB, 32B line, 2-way associative, 1-cycle latency, and least-recently-used replacement policy. 
• L2:  1MB (unified data and instructions), 64B line, 2-way associative, 8-cycle latency, and least-recently-

used replacement policy. 

The following three graphs show the cache miss rates reported for each of the four configurations on the stress-
marks. 

 

                                                           
61 D. C. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, Computer Architecture News, 25 (3), 
June 1997. 
62 C. Price, MIPS IV Instruction Set, revision 3.1, MIPS Technologies Inc., January 1995. 
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For the Pointer and Update stressmarks, no real gain or loss is shown by any configuration.  The access pattern for 
these stressmarks is essentially random, and the AMRM approaches do not address this pattern.  Tests 15, 16, and 17 
of the Pointer series, and 11, 12, and 13 of the Update series were window tests, where multiple words are accessed 
at each pointer destination address.  This explains the lower miss rates for these tests.  The tests with lower indices 
generally had smaller address ranges, again resulting in lower miss rates due to fewer capacity misses and greater 
locality. 
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12.3 Efficiency 
Based on the latencies of the cache hierarchy, we can calculate the efficiency of the memory system according to the 
following equations: 
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where R is the miss ratio and L is the access latency.  Elimination of all misses gives an efficiency of one.  A reduc-
tion in Lhit is not considered in the context of AMRM, since the project goals assumed certain basic architectural 
elements such as a single cache hierarchy for each processor.  The AMRM team generally utilized a value of 8 for 
Lmiss; that value was used for this study, as well.  Obviously, the efficiency gains reported here would increase with 
an increase in Lmiss. 
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12.4 Matrix 
Calculated as described above, the efficiency of the configurations against address range is shown in the following 
graph. 

 
Not many Matrix tests were run, owing to the long time required for simulation of this stressmark. Although the 
Adaptive Fetch Line Size configuration yields dramatically higher efficiency than the others, significant decline is 
seen with address range.  It is unknown how the configurations would react to larger problems of this type. 
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12.5 Transitive Closure 
The efficiencies of the configurations for Transitive Closure tests are shown below. 

 
Most obvious is the dramatic drop in efficiency once the problem becomes too large to fit mostly in cache.  The 
Stream Buffer configuration gives improved results—as expected for this fairly regular stressmark—but not with 
great consistency.  Since the larger address ranges correspond to more cycles-to-completion for this stressmark, 
small efficiency gains can net significant performance gains.  
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12.6 Neighborhood 
The efficiencies for Neighborhood are shown against address range below.  Note that even the baseline configura-
tion shows high efficiencies for the small problem sizes tested.  Many of the accesses for this stressmark are in unit-
stride.  Presumably, the histogramming portion of the code generates the bulk of the misses for these prefetch-
enabled configurations. 

 

12.7 Programming 
The AMRM approach demands no source-level changes to code.  Legacy code is therefore supported, and any gains 
possible with the system are equally available to legacy code and newly developed code. 

12.8 Remarks 
The AMRM team utilized a sampling simulator for its tests.  We are unable to determine the accuracy of the simula-
tion results, but we assume that they are sufficient for comparisons between the adaptation strategies. 

AMRM demonstrated the ability to build adaptivity into the memory hierarchy without reconfigurable circuitry.  
The team claims that these adaptive mechanisms can simplify the memory architecture.  For instance, use of an 
adaptive line-size in the cache can potentially replace various architectural mechanisms such as unit-stride prefetch-
ing, victim cache, cache bypass, and split-access type caches. 

None of the approaches tested by the AMRM team offered any gain for the Pointer or Update stressmarks.  We as-
sume this is a fair indication that GUPS performance would not be improved, either. 
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The DIS stressmarks probably do not fully expose the value of the Victim Cache approach, since they exhibit rela-
tively few conflict misses.  This is an unfortunate product of the needs of the stressmarks, which were developed in 
part for ease of use and implementation.  Presumably, the DIS benchmarks would have been a more appropriate test 
vehicle for the VC approach. 

The other approaches did show efficiency gains, up to about 1.75 for the Matrix stressmark.  Adaptive Fetch Line 
Cache, especially, gave good results.  The Stream Buffer approach was strong for the more regular Transitive Clo-
sure stressmark. 

The efficiency gains shown would theoretically increase in magnitude if Lmiss were to increase.  By all indications, 
for conventional systems, Lmiss will continue to grow in the near future. 
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13 Advisor 
The Algorithms for Data Intensive Applications on Intelligent and Smart Memories (ADVISOR) project63 developed 
an algorithmic framework to enable effective and efficient mapping of data intensive applications onto smart-
memory architectures. With these techniques, the value of the higher bandwidth and lower latency offered by ad-
vanced architectures is maximized. 

13.1 Description 
The Advisor project resulted in various algorithmic techniques for use with architectures developed under the DIS 
program.  Bandwidth-aware algorithms are expected to result in superior performance compared with straightfor-
ward mapping, which does not consider the costs involved in on-chip and off-chip memory access.  Memory per-
formance can be improved by matching the application data access patterns to the data arrangement in memory.  The 
following gives an overview of the reported techniques: 

• Application Level Memory Access Optimization:  For most applications, cache and TLB behavior have a sig-
nificant effect on performance.  State-of-the-art data layouts and control transformations attempt to minimize 
capacity misses and interference misses in the cache hierarchy.  Control optimizations like tiling reduce the 
working set, and improve cache behavior by reducing capacity misses.  However, when used in conjunction 
with row-major or column-major layouts, tiling does not eliminate cache conflict misses.  Tiling of matrix com-
putations also does not address page locality in the TLB.  The Advisor team described a cache-conscious data 
layout for matrix structures, involving a contiguous layout of the data elements within a tile.  Use of block data 
layout for tiled computations achieves a significant reduction in TLB misses, and helps reduce self-interference 
misses for large matrices. 

• Cache-conscious data layout based on Perfect Latin Squares:  The Advisor team used Perfect Latin Squares as 
a mathematical framework for data distribution among parallel memory banks to minimize memory bank con-
flicts.  The team applied these methods to uniprocessor memory hierarchies to minimize cache conflicts.  The 
mapping allows conflict-free access to rows, columns, main diagonals, and minor sub-squares of square matri-
ces.  The team claimed an up-to-O(N2) reduction in cache conflicts for column access, compared to standard 
row-major layout. 

• Data Layout Optimizations for the Transitive Closure Stressmark :  The team developed the Unidirectional 
Space Time Representation (USTR) to uniquely address the complexities of transitive closure.  Measurements 
relating to this method are given in this section. 

• Cache-Friendly Graph Representation:  The team applied a cache-friendly graph representation developed for 
Dijkstra's algorithm.  The optimization combines the superior size of an adjacency list with the regular access 
pattern of an adjacency matrix, resulting in an up-to-2x performance improvement. 

• Tiling:  The basic goal of tiling is to reduce the work set size so that the problem will fit into the cache. By re-
ordering the smaller problems or tiles, data dependencies can be satisfied.  The team reported an up-to-10x im-
provement for the Floyd-Warshall algorithm. 

                                                           
63 http://advisor.usc.edu 
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• Graph Matching:  For dependencies that require possibly examining the entire graph during each step of the 
computation, the graph can be partitioned into sub-graphs that fit into the cache.  By doing some local computa-
tions, the total work required can be reduced.  The Advisor team reported that experimental results show per-
formance improvements as highly dependent on the density of the graph, averaging between 2x and 6x. 

13.2 Measurements 
Advisor only tested one DIS stressmark:  the Transitive Closure stressmark.  The team ran a complete series for each 
of seven algorithms (a baseline, plus six alternatives) on each of four hardware platforms. 

13.2.1 Algorithms 

The algorithms are introduced in the following table. 

Algorithm64 

Baseline 

Normal Floyd-
Warshall (Base-
line) 

A straightforward implementation of the Floyd-Warshall algorithm similar to the code 
given in the Stressmark specification was compiled using all optimizations available in 
the GNU C++ (gcc) compiler and the Microsoft Visual C++ compiler.  The execution 
time of the kernel was collected and used as the baseline for the optimized implementa-
tions of the Floyd-Warshall algorithm.  This same compilation and execution time col-
lection was used for all implementations. 

FW TC 

Floyd-Warshall 
with Tiling and 
Copying 

Tiling with copying is a standard cache-friendly optimization that can be performed 
using current research compilers.  Because of this, tiling with copying are applied to the 
Floyd-Warshall algorithm.  Due to data dependences current research compilers can 
only tile the inner two loops. 

FW USC 

Floyd-Warshall 
with Tiling and 
the Block Data 
Layout 

In order to avoid the overhead of copying, the Block Data Layout (BDL) was used for 
the adjacency matrix.  The BDL is a known layout that places a tile of data in contigu-
ous locations instead of a row.  As in the tiling with copying optimization, only the in-
ner two loops were tiled due to data dependences.  Since this is also a known technique, 
it was also considered a baseline optimization. 

DJK Heap 

Basic Dijkstra’s 

The baseline Dijkstra’s algorithm for the all pairs shortest path problem.  Again, the best 
compiler optimizations available are utilized.  A binary heap is used to implement the 
priority queue and store the graph as an adjacency list. 

DJK CF 

Cache-Friendly 
Dijkstra’s 

In order to match the data access pattern of Dijkstra’s algorithm to the data layout, the 
adjacency list is replaced with the adjacency matrix, and the binary heap is replaced 
with an array.  A linear search is employed to find the minimum value.  In this way, 
advantage is taken of data reuse at the cache line level, and prefetch is simplified. 

SA BDL 

Simple USTR 
Floyd-Warshall 

The basic Unidirectional Space Time Representation (USTR) developed by the Advisor 
team.  This incarnation uses a systolic array implementation of the Floyd-Warshall algo-
rithm. 

 

                                                           
64 More detail can be found in M. Penner and V. K. Prasanna, Cache-Friendly Implementations of Transitive Clo-
sure, Proceedings of International Conference on Parallel Architectures and Compiler Techniques, Barcelona, Spain, 
September 2001.  Also see J. S. Park, M. Penner, and V. K. Prasanna, Optimizing Graph Algorithms for Improved 
Cache Performance, Proceedings of International Parallel and Distributed Processing Symposium, Fort Lauderdale, 
Florida, April 2002. 
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FW USTR 

Optimized 
USTR Floyd-
Warshall 

A tiled implementation of the Floyd-Warshall algorithm, which also fits in the USTR. 
In order to eliminate the three passes present in the simple USTR implementation, the 
computation of tiles is reordered. 

A recursive iteration of this implementation was also tested.  Only partial results were 
presented.  See the notes regarding the data below. 

13.2.2 Platforms 

The platforms utilized are described in the following table. 

Platform 

PIII The Pentium III Xeon running Windows 2000 is a 700MHz, 4-processor shared mem-
ory machine with 4GB of main memory.  Each processor has 32KB of level-1 data 
cache and 1MB of level-2 cache on-chip.  The level-1 cache is 4-way set-associative 
with 32B lines and the level-2 cache is 8-way set-associative with 32B lines. 

Sun The UltraSPARC III machine is a 750 MHz SUN Blade 1000 shared memory machine 
running Solaris 8.  It has 2 processors and 1GB of main memory. Each processor has 
64KB of level-1 data cache and 8MB of level-2 cache.  The level-1 cache is 4-way set 
associative with 32B lines and the level-2 cache is direct mapped with 64B lines. 

Alpha The Alpha 21264 is a 500MHz uniprocessor machine with 512MB of main memory.  It 
has 64KB of level-1 data cache and 4MB of level-2 cache.  The level-1 cache is 2-way 
set associative with 64B lines and the level-2 cache is direct mapped with 64B lines.  It 
also has an 8-element fully associative victim cache.  All experiments are run on a uni-
processor or on a single node of a multiprocessor system. 

MIPS The MIPS machine is a 300 MHz R12000, 64 processor, shared memory machine with 
16GB of main memory.  Each processor has 32KB of level-1 data cache and 8MB of 
level-2 cache.  The level-1 cache is 2-way set-associative with 32B lines and the level-2 
cache is direct-mapped with 64B lines. 

13.2.3 Data Notes 

Each implementation was compiled using the highest level of optimization available in gcc. 

Times were collected using the system time function.  Timer resolution was one microsecond for all machines ex-
cept the Pentium III, for which it was one millisecond. 

For our purposes, the results of the recursive implementation of the Floyd-Warshall algorithm and the optimized FW 
USTR were very similar.  The results for the recursive FW USTR were not gathered for the MIPS machine.  The 
results for the optimized FW USTR on the Alpha machine had a granularity of one second.  Therefore, the recursive 
FW USTR times are substituted for the optimized FW USTR for the Alpha machine. 

The MIPS machine shows unexpected variation in the results due to a high concurrent user load.  

A total of 9 of the measurements were observed as irregular and removed or, in the case of obvious typographical 
errors, altered. 
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13.3 Transitive Closure 
The chart below gives an overview of the results.  Each time is shown as one bar.  Each color represents a different 
configuration (i.e., combination of algorithm and platform).  Problem sizes generally increase with test file number. 
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13.3.1 Baseline Processing Rates 

This graph shows the baseline processing rates, graphed against address range.  Note that all platforms show a de-
cline when the problem no longer fits within nearby cache.  The Pentium machine particularly exhibits a strong 
peak, suggesting a severe processor-memory mismatch. 
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13.3.2 Processing Rates 

The graph below gives the processing rates for each of the algorithms under test.  Each subgraph shows one algo-
rithm; the four series represent the different platforms. 

 
The FW TC version shows a performance envelope similar to that of the baseline.  The FW USC version gives bet-
ter performance, though a drop for larger problems is still evident.  The two DJK approaches have dramatically dif-
ferent performance envelopes here because there is a performance dependency on the number of edges in the graph; 
the FW variants are mostly dependent on the number of nodes.  Note that the MIPS machine reacts uniquely to the 
two DJK approaches, in that its performance pattern is contrary to the other three machines.  Finally, both of the 
USTR representations deliver processing rates that do not drop off as cache is exceeded.  The optimized (FW 
USTR) version does dramatically better than the simple (SA BDL) version, though both suggest improved efficien-
cies by expanding the performance envelope. 
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13.3.3 FW Efficiency 

It is not strictly valid to calculate common efficiencies when the algorithms differ.  However, although the variants 
of the Floyd-Warshall algorithms do not utilize the same paths to solution, the primary variation is in how data is 
arranged. The reader is cautioned to keep this in mind when viewing the following graph, which gives the efficien-
cies of the algorithms, based on the peak observed processing rates of each platform. 
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13.3.4 DJK Value 

The graph below gives the processing rate for the DJK Heap configurations.  Observe that processing rate declines 
as edge density rises.  For large, sparsely-connected graphs, this approach could give better performance for a given 
architecture. 

 

13.4 Programming 
The Advisor team utilized off-the-shelf hardware for these tests.  The programmability of the machines in general is 
not a question to be addressed here. 

The optimizations described here were all developed and tested by hand.  Although the net changes to the source 
code were relatively slight, a great deal of human labor was expended in applying the concepts to the Transitive 
Closure stressmark.  The Advisor team outlined methods for automating selection of certain parameters within the 
scope of this problem, but the general use of these techniques would not be simple given a new problem to solve. 
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13.5 Remarks 
The Advisor project demonstrated performance enhancements available for those in a position to develop better 
software, with awareness of memory hierarchy costs.  Developers can maximize the performance of their algorithms 
by increasing data reuse, decreasing cache conflicts, and decreasing cache pollution wherever possible.  The project 
found several data layout and data access optimizations for the Transitive Closure stressmark, resulting in perform-
ance gains of up to 10.0 for the PIII architecture, and excellent efficiency curves.  Tests were performed using off-
the-shelf platforms under realistic circumstances.  The team claims the same techniques can benefit a large class of 
algorithms, though we do not find that this would be readily demonstrable. 

This project explored the potential of algorithmic enhancements, which do not require modification of hardware or 
operating system.  Still, the cost of use of the new representations is very high, since they are labor intensive, and 
problem-dependent.  While the tests on the one stressmark were comprehensive, only one was tested, and to do oth-
ers would require significant labor. 
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14 Algorithmic Strategies for Compiler-Controlled Caches 
The Algorithmic Strategies for Compiler Controlled Caches (ASC3) project65 developed methods for managing pro-
grammable caches to overcome the performance hurdles germane to data-intensive applications.  Hardware-based 
smart cache management was implemented and validated via simulation and emulation within the HP-Intel IA-64 
program.  The simulated devices monitored memory access patterns and automatically customized the cache man-
agement strategy to the application's needs. 

14.1 Description 
The ASC3 project concerned itself with application analysis and subsequent synthesis of program-specific memory 
management strategies.  The analysis, or cartography, employs aggressive techniques drawn from diverse domains 
(e.g. pattern matching, computational learning, randomized sampling, and on-line algorithms) for discerning hidden 
data reference patterns from profiles and maps.  Cartography is geared to characterize the behavior of an application 
as quasi-regular, quasi-irregular, or irregular.  The characterization guides the synthesis of custom memory man-
agement strategies tailored for an application.  The proposed range of solutions varies from completely static ap-
proaches for quasi-regular patterns, to complete run-time support for irregular applications. 

 

Results were reported for two types of optimizations: 

• Cache-Sensitive Scheduling.  These results were given in the form of cycles-to-completion on a Trimaran-
simulated machine with the following cache parameters: 

• cache #0 (based on IA-64).  L1: I-16KB, D-16KB, 4-way set-associative, 32-byte lines.  L2: 96KB, 6-way 
set-associative, 64-byte lines.  The tests with the Update stressmark below utilized this configuration. 

• cache #1 (based on PIII).  L1: I-64KB, D-64KB, 4-way set-associative, 32-byte lines.  L2: 8MB, 8-way set-
associative, 64-byte lines.  The tests on the Matrix and Transitive Closure stressmarks below were based on 
this configuration. 66 

• Data Remapping.  These results were given in the form of an execution speed-up factor.  Gcc was used, with –O 
or –O3 flags, on three different processors: 

• 750MHz Pentium III with 256Kb L2; 

• 400MHz Pentium II with 512Kb L2; and 

• 400MhZ UltraSparc II with 2048Kb L2. 

                                                           
65 http://www.crest.gatech.edu 
66 Conflicting information was reported about the configuration.  The information supplied with the recorded data 
declared a 64KB L1 and an 8MB L2, while a separate summary report claimed a 16KB L1 and a 512KB L2. 
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14.1.1 Update 

Results for Cache-Sensitive Scheduling of the Update stressmark are shown here.  The bar chart shows raw time 
information, while the graph gives processing rates and gains (over baseline) versus address range. 

 

 
Note the very narrow range of addresses; the team tested small problems.  Although the 96KB simulated L2 cache 
was likewise small, it could nearly or fully contain the entire problem for each of these tests.  That the results indi-
cate a 10% improvement for a problem fitting entirely into L1 is impressive.  This stressmark has a high rate of 
compulsory misses for the small problems, and hiding of these misses is difficult due to the random nature of the 
problem.  The performance gain climbed to about 37% when the problem fit mostly in L2.   

It would be dangerous to interpolate performance for larger problems, given that the effects of CSS are not demon-
strated here for problems that substantially do not fit within L2. 
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14.1.2 Matrix Stressmark 

The graph below shows performance figures for Cache-Sensitive Scheduling of the Matrix stressmark.  The bar 
chart shows raw time information, while the graph gives processing rates and gains (over baseline) versus address 
range.  96K and 8M refer to the number of bytes in the L2 cache. 

 

 
Again, the address range is small; all problems tested would easily fit within the 8MB L2 cache.  The gains shown 
could, therefore, have much to do with avoiding the penalties of L1 misses. 

The processing gains shown are constant, even as the rates decline for increasing problem sizes.  It is unknown 
whether these gains could be realized for very large problems, but the possibility is suggested since the gains for the 
96K configuration do not drop for the larger tested problems. 
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14.1.3 Transitive Closure 

The ASC3 team gave an isolated result for Transitive Closure.  For test tc06, the team recorded 91.7Gcycles for the 
8M L2 baseline configuration, and 89.9Gcycles for the CSS configuration.  This represents a speed increase of about 
2%. 

14.1.4 Field Stressmark 

For the Field stressmark, the ASC3 team applied Data Remapping.  The recorded processing rate gains are shown 
below. 

 
As with the previous three stressmarks, the tests shown here involved a small problem size.  The largest cases here 
would not fully fit within the tested L2 caches, but the other cases would.  Additionally, this stressmark is extremely 
regular, and prefetching tends to hide any off-cache latency problems. 

It is interesting that the ASC3 team was able to demonstrate even modest speed gains for this highly regular stress-
mark without hardware modifications.  However, the better gains are shown when compared with a low level of 
compiler optimization.  When using –O3, little gain is offered, and only for the PIII system.  There is a performance 
loss compared to the UltraSparc –O3 and PII –O3 configurations.  It seems likely that this is reflective of the better 
processor-memory harmony for those systems.  In other words, this technique, as would be expected, is beneficial 
when there exist memory hierarchy inefficiencies. 

Like the gains for the Matrix stressmark, the gains appear consistently across the (narrow) range of problem sizes 
tested. 
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14.1.5 Data Management Benchmark 

The speed gains reported for Data Remapping of the Data Management Benchmark are shown below. 

 
Only one test was reported using the UltraSparc and PII configurations, but it seems likely that the UltraSparc tests 
would only show speed losses.  The PIII –O configuration is expected to have the worst processor-memory mis-
match, so the highest gains offered are not surprising here.  For the PIII –O3 configuration, increases of 10 to 15% 
are seen with fair consistency.  Test #26 keeps the largest database on average over time. 
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14.1.6 SAR Ray-Tracing Benchmark 

The speed gains of four Ray-Tracing Benchmark tests utilizing Data Remapping are given below.  Again, net in-
creases of 15-20% are seen against what is expected to be the worst of the tested configurations (i.e., the configura-
tion that has the most to gain from these algorithms).  No measurements for other configurations were reported, but 
the other evidence within this section suggests that no noteworthy gains would be available for this benchmark on 
any of the other configurations, and substantial losses for the UltraSparc –O3 configurations seem likely. 

 

14.2 Programming 
The approaches were tested within the scope of finding program optimizations that could be found and implemented 
by compilers, so special programming techniques are not a consideration. 



 

 129

14.3 Remarks 
The two approaches explored under ASC3 gave small (10-20% typical) gains in processing rate with no hardware 
modification. 

Cache-Sensitive Scheduling showed modest gains for the highly irregular Update stressmark, and the semi-regular 
Matrix stressmark, but negligible gain for Transitive Closure.  Most of the test data sets were able to fit within L2.  It 
is unknown what level of gains would be offered by CSS if traditional compiler optimizations were employed as 
well.  If the compiler did not fully optimize the code as a baseline condition, the gains reported here would be sig-
nificantly larger than those realizable in practice. 

The Data Remapping approach was able to show significant gains for the PIII architecture, but those gains were 
diminished when compared to those offered by current compiler optimizations.  The Sparc architecture, which ex-
hibits less of a processor-memory mismatch, saw a reduction in performance.
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15 Program Analysis 
Taking the collection of DIS benchmark results together, it is desirable to extract information relevant to the whole 
program.  Specifically, it is desirable to know which approaches yielded good results for given problems, so that 
system designers or users may choose the appropriate technology for their tasks. 

The DIS contractors returned results from a subset of the DIS benchmarks and stressmarks.  This affected the ability 
to make comprehensive findings and develop broad conclusions.  In the future, studies of performance correlated 
with problem variables, as well as fair comparison of approaches in various domains would be desirable. 

This section attempts to draw together key elements from individual projects to form a simplified image of DIS 
benchmarking results. 

15.1 Demonstrated Stressmark Gains 
The tables below attempt to describe the performance gain demonstrated for each stressmark.  These graphs, how-
ever, are necessarily approximate, because the performance offered in a given instance is subject to myriad circum-
stances.  While interpreting the graphs, pay special attention to the following important notes: 

• The graphs show demonstrated performance gain, but this value may be defined differently for different 
projects.  In most cases, it relates to reduction of time-to-complete for a given problem.  Gain values are 
approximate, and are derived from individual selected tests, averages of several tests, and estimations. 

• The order of the projects as they appear in the graph is significant.  It indicates a rough ranking, in our 
opinion, of the hardware implementation complexity of the system.  At the very bottom of the graph are 
projects requiring software modification only.67  Above those appear projects modifying small elements 
(e.g., memory controllers or cache behavior) of systems.  Above those are the PIM-based architectures.  At 
the very top are the memory-stream devices.  These rankings are subjective, and no effort is made to find 
the relative distance between individual ranks. 

• Each stressmark is divided into Small Test and Large Test categories.  The boundary between the two was 
generally held to 1Mword, which is drastically smaller than we had hoped.  Because of this, the reader is 
cautioned to understand that Large Tests in many cases are still not large at all, and in some cases may even 
fit within cache of modern systems. 

• The vast majority of results presented here are based on simulations.  It is very likely that actual measure-
ments would deviate significantly, perhaps even from so-called ‘cycle-accurate’ simulations.  The Sim-
pleScalar simulator, for example, was utilized by several teams.  It only superficially models the 
superscalar CPU, and it is inaccurate: it passes system calls directly to kernel, contains minimal memory 
timing functionality, gives dubious results, and typically reports radically higher (up to 1 Order) IPC than 
the actual CPU.68 

• Of the teams with in situ processing approaches, only the Diva team provided data relative to multi-chip 
operation.  The data below for other teams are based on single-chip configurations. 

                                                           
67 Understand that software-only approaches do not necessarily cost less to utilize. 
68 Larry Rudolph, Malleable Caches Principal Investigator, during project review, March, 2001. 
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• Where results were not provided for a project, the project name does not appear in the graph.  In cases 
where a project name appears but no bars show, the project did not demonstrate appreciable gain. 

• In most cases, the absence of a Large Test bar where a Small Test bar is present indicates that only small 
tests were performed. 

• Very few of the teams supplied any output files for verification of correct operation.  It is assumed that the 
teams validated their own.  However, if any data were supplied based on faulty runs, the results shown in 
this document could be skewed. 

• No team declared that it deviated from numerical (data type) standards.  It is unknown whether any team 
instituted more rigorous standards than those required. 
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15.1.1 Demonstrated Pointer Stressmark Gains 
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15.1.2 Demonstrated Update Stressmark Gains 
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15.1.3 Demonstrated Neighborhood Stressmark Gains 

Neighborhood Stressmark Gains
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15.1.4 Demonstrated Matrix Stressmark Gains 
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15.1.5 Demonstrated Field Stressmark Gains 

Field Stressmark Gains
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15.1.6 Demonstrated Transitive Closure Stressmark Gains 
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15.1.7 Demonstrated Corner-Turn Stressmark Gains 

Corner-Turn Stressmark Gains
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15.2 SLIIC Measurements 
The System Level Intelligent Intensive Computing (SLIIC) project69 is developing a system-level architecture that 
uses DIS PIM component technology to achieve two orders of magnitude of performance improvement on data-
intensive radar processing applications.  As part of this effort, the SLIIC team studied the performance of Imagine 
and IRAM components on radar processing applications.  The team reported the following results for corner-turning.  
Note that the two OTS systems were measured, while the two DIS systems were simulated. 

                                                           
69 http://www.east.isi.edu/projects/SLIIC/ 
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15.3 Projections 
In many ways, the DIS program is probably ahead of its time.  The divergence of performance of processors and 
memory is real, but for the moment, the disparity can be hidden with ever larger and deeper caches.  Systems ulti-
mately become less efficient, but the pure speed offered by new processors is so great that there is a net performance 
gain even with the inefficiencies. 

This may not always be true.  For problems requiring global unpredictable access to data or movement of large data 
quantities, the processor-memory disparity is already a problem that cannot be hidden, and with memory latencies 
projected to increase to around 256 cycles in the next 1-2 years,70 ever more algorithms will suffer data starvation.  
To compensate, designers may attempt to ensure that multiple tasks are always active, but that approach bears its 
own data starvation problems. 

Even when the measured performance gain is slight, the dividends for future systems could be great.  We anticipate 
that the approaches developed under the DIS program will increase in value exponentially over time. 

 

 

                                                           
70 Larry Rudolph, Malleable Caches project review, 21 March, 2001. 
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16 ACRONYMNS 
ASC3-Algorithmic Strategies for Compiler Controlled Caches  

ADVISOR- Algorithms for Data Intensive Applications on Intelligent and Smart Memories 

AFL- Adaptive Fetch Line Cache 

ALS- Adaptive Line Size Cache 

AMRM- Adaptive Memory Reconfiguration and Management 

ATR- Automatic Target Recognition  

BDL- Block Data Layout 

CFAR- Constant False Alarm Rate 

CMOS- Complimentary Metal Oxide Semiconductor 

COTS- Commercial-Off-The-Shelf 

CPU- Central Processing Unit 

CSS- Case Sensitive Scheduling 

DARPA- Defense Advanced Research Projects Agency 

DBMS- Database Management System 

DFT- Discrete Fourier Transform  

DIS- Data Intensive Systems 

DIVA- Data-IntensiVe Architecture  

DoD- Department of Defense 

DRAM- Dynamic Random Access Memory 

DSIM- DIVA Simulator 

DSPs- Digital Signal Processors 

EM- Electromagnetic  

FFT- Fast Fourier Transform 

FIR- Finite Impluse Response 

FW- Floyd-Warshall 

GFLOPs- Giga Floating Point Operations Per Second 

GLCM - gray-level co-occurrence matrix  

GOPs- Giga Operations Per Second 

GPO- Generalized Physical Optics 

GPS- Global Positioning System  
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GUPS- Global Updates Per Second 

HiDISC- Hierarchical Decoupled Instruction Stream Computer  

IPC- Instructions per Clock- 

IPTO- Information Processing Technology Office 

IPR- Impulse Response  

IRAM- Intelligent Random Access Memory 

LRU- Least Recently Used 

MoM- Method of Moments  

MOPS- Millions of Operations Per Second 

NRE- Non-Recurring Engineering 

OLCD- Object Level Change Detection 

OODB- Object Oriented Database 

OPS- Operations per Second  

OS- Operating System 

OTS- Off-The-Shelf 

PIM- Processor-in-Memory 

PiRCs- PIM route components  

PO- Physical Optics  

PTF- Physical Theory of Diffraction  

RAM- Random Access Memory 

ROI- Region of Interest  

RSIM- Rice Simulator for ILP Multi-Processors 

SAR- Synthetic Aperture Radar  

SB- Stream Buffers 

SIMD- Single Instruction Multiple Data 

SLIIC- System Level Intelligent Intensive Computing  

SPD- Special Purpose Device 

SPMV- Sparce Matrix Vector Multiply 

SRAM- Static Random Access Memory 

SRF- Stream Register File 

TLB- Transaction Lookaside Buffer 

URSIM- Utah RSIM 

USTR- Unidirectional Space Time Representation 

VC- Victim Cache 

VIRAM- Vector Intelligence Random Access Memory 
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VLSI- Very Large Scale Integration 

 


